impute_mean {naniar} | R Documentation |
Impute the mean value into a vector with missing values
Description
This can be useful if you are imputing specific values, however we would
generally recommend to impute using other model based approaches. See
the simputation
package, for example simputation::impute_lm()
.
Usage
impute_mean(x)
## Default S3 method:
impute_mean(x)
## S3 method for class 'factor'
impute_mean(x)
Arguments
x |
vector |
Value
vector with mean values replaced
Examples
library(dplyr)
vec <- rnorm(10)
vec[sample(1:10, 3)] <- NA
impute_mean(vec)
dat <- tibble(
num = rnorm(10),
int = as.integer(rpois(10, 5)),
fct = factor(LETTERS[1:10])
) %>%
mutate(
across(
everything(),
\(x) set_prop_miss(x, prop = 0.25)
)
)
dat
dat %>%
nabular() %>%
mutate(
num = impute_mean(num),
int = impute_mean(int),
fct = impute_mean(fct),
)
dat %>%
nabular() %>%
mutate(
across(
where(is.numeric),
impute_mean
)
)
dat %>%
nabular() %>%
mutate(
across(
c("num", "int"),
impute_mean
)
)
[Package naniar version 1.1.0 Index]