Missing Data Imputation Using Gaussian Copulas


[Up] [Top]

Documentation for package ‘mdgc’ version 0.1.7

Help Pages

mdgc-package mdgc: Missing Data imputation using Gaussian Copulas
get_mdgc Get mdgc Object
get_mdgc_log_ml Get Pointer to C++ Object to Approximate the Log Marginal Likelihood
get_mdgc_log_ml.data.frame Get Pointer to C++ Object to Approximate the Log Marginal Likelihood
get_mdgc_log_ml.default Get Pointer to C++ Object to Approximate the Log Marginal Likelihood
get_mdgc_log_ml.mdgc Get Pointer to C++ Object to Approximate the Log Marginal Likelihood
mdgc Perform Model Estimation and Imputation
mdgc_fit Estimate the Model Parameters
mdgc_impute Impute Missing Values
mdgc_log_ml Evaluate the Log Marginal Likelihood and Its Derivatives
mdgc_start_value Get Starting Value for the Covariance Matrix Using a Heuristic
mdgc_start_value.default Get Starting Value for the Covariance Matrix Using a Heuristic
mdgc_start_value.mdgc Get Starting Value for the Covariance Matrix Using a Heuristic
_PACKAGE mdgc: Missing Data imputation using Gaussian Copulas