get_mdgc_log_ml {mdgc} | R Documentation |
Get Pointer to C++ Object to Approximate the Log Marginal Likelihood
Description
Creates a C++ object which is needed to approximate the log marginal likelihood. The object cannot be saved.
Usage
get_mdgc_log_ml(object, ...)
## S3 method for class 'mdgc'
get_mdgc_log_ml(object, ...)
## S3 method for class 'data.frame'
get_mdgc_log_ml(object, ...)
## Default S3 method:
get_mdgc_log_ml(
object,
lower,
upper,
code,
multinomial,
idx_non_zero_mean,
...
)
Arguments
object |
mdgc object from |
... |
used to pass arguments to S3 methods. |
lower |
[# variables]x[# observations] matrix with lower bounds for each variable on the normal scale. |
upper |
[# variables]x[# observations] matrix with upper bounds for each variable on the normal scale. |
code |
[# variables]x[# observations] matrix integer code for the
each variable on the normal scale. Zero implies an observed value (the
value in |
multinomial |
|
idx_non_zero_mean |
indices for non-zero mean variables. Indices should be sorted. |
Details
Indices are zero-based except the outcome index for multinomial variables.
idx_non_zero_mean
indices with terms with code
equal to zero
(observed values) are ignored.
Value
A Rcpp::XPtr
to pass to e.g. mdgc_log_ml
.
See Also
Examples
# there is a bug on CRAN's check on Solaris which I have failed to reproduce.
# See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
# Thus, this example is not run on Solaris
is_solaris <- tolower(Sys.info()[["sysname"]]) == "sunos"
if(!is_solaris){
# randomly mask data
set.seed(11)
masked_data <- iris
masked_data[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA
# use the functions in the package
library(mdgc)
obj <- get_mdgc(masked_data)
ptr <- get_mdgc_log_ml(obj)
}