mdgc_start_value {mdgc} | R Documentation |
Get Starting Value for the Covariance Matrix Using a Heuristic
Description
Uses a heuristic to get starting values for the covariance matrix. These
can be passed e.g. to mdgc_fit
.
Usage
mdgc_start_value(object, ...)
## S3 method for class 'mdgc'
mdgc_start_value(object, ...)
## Default S3 method:
mdgc_start_value(
object,
lower,
upper,
code,
multinomial,
idx_non_zero_mean,
mea,
n_threads = 1L,
...
)
Arguments
object |
mdgc object from |
... |
used to pass arguments to S3 methods. |
lower |
[# variables]x[# observations] matrix with lower bounds for each variable on the normal scale. |
upper |
[# variables]x[# observations] matrix with upper bounds for each variable on the normal scale. |
code |
[# variables]x[# observations] matrix integer code for the
each variable on the normal scale. Zero implies an observed value (the
value in |
multinomial |
|
idx_non_zero_mean |
indices for non-zero mean variables. Indices should be sorted. |
mea |
vector with non-zero mean entries. |
n_threads |
number of threads to use. |
Value
The starting value for the covariance matrix.
Examples
# there is a bug on CRAN's check on Solaris which I have failed to reproduce.
# See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
# Thus, this example is not run on Solaris
is_solaris <- tolower(Sys.info()[["sysname"]]) == "sunos"
if(!is_solaris){
# randomly mask data
set.seed(11)
masked_data <- iris
masked_data[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA
# use the functions in the package
library(mdgc)
obj <- get_mdgc(masked_data)
ptr <- get_mdgc_log_ml(obj)
start_vals <- mdgc_start_value(obj)
print(start_vals) # starting value for the covariance matrix
}