| mdgc_start_value {mdgc} | R Documentation | 
Get Starting Value for the Covariance Matrix Using a Heuristic
Description
Uses a heuristic to get starting values for the covariance matrix. These
can be passed e.g. to mdgc_fit.
Usage
mdgc_start_value(object, ...)
## S3 method for class 'mdgc'
mdgc_start_value(object, ...)
## Default S3 method:
mdgc_start_value(
  object,
  lower,
  upper,
  code,
  multinomial,
  idx_non_zero_mean,
  mea,
  n_threads = 1L,
  ...
)
Arguments
object | 
 mdgc object from   | 
... | 
 used to pass arguments to S3 methods.  | 
lower | 
 [# variables]x[# observations] matrix with lower bounds for each variable on the normal scale.  | 
upper | 
 [# variables]x[# observations] matrix with upper bounds for each variable on the normal scale.  | 
code | 
 [# variables]x[# observations] matrix integer code for the
each variable on the normal scale. Zero implies an observed value (the
value in   | 
multinomial | 
 
  | 
idx_non_zero_mean | 
 indices for non-zero mean variables. Indices should be sorted.  | 
mea | 
 vector with non-zero mean entries.  | 
n_threads | 
 number of threads to use.  | 
Value
The starting value for the covariance matrix.
Examples
# there is a bug on CRAN's check on Solaris which I have failed to reproduce.
# See https://github.com/r-hub/solarischeck/issues/8#issuecomment-796735501.
# Thus, this example is not run on Solaris
is_solaris <- tolower(Sys.info()[["sysname"]]) == "sunos"
if(!is_solaris){
  # randomly mask data
  set.seed(11)
  masked_data <- iris
  masked_data[matrix(runif(prod(dim(iris))) < .10, NROW(iris))] <- NA
  # use the functions in the package
  library(mdgc)
  obj <- get_mdgc(masked_data)
  ptr <- get_mdgc_log_ml(obj)
  start_vals <- mdgc_start_value(obj)
  print(start_vals) # starting value for the covariance matrix
}