Multivariate Data Analysis for Chemometrics


[Up] [Top]

Documentation for package ‘mdatools’ version 0.14.1

Help Pages

A C D E F G H I J L M P R S U V

-- A --

as.matrix.classres as.matrix method for classification results
as.matrix.ldecomp as.matrix method for ldecomp object
as.matrix.plsdares as.matrix method for PLS-DA results
as.matrix.plsres as.matrix method for PLS results
as.matrix.regcoeffs as.matrix method for regression coefficients class
as.matrix.regres as.matrix method for regression results
as.matrix.simcamres as.matrix method for SIMCAM results
as.matrix.simcares as.matrix method for SIMCA classification results

-- C --

capitalize Capitalize text or vector with text values
carbs Raman spectra of carbonhydrates
categorize Categorize PCA results
categorize.pca Categorize PCA results based on orthogonal and score distances.
categorize.pls Categorize data rows based on PLS results and critical limits for total distance.
chisq.crit Calculates critical limits for distance values using Chi-square distribution
chisq.prob Calculate probabilities for distance values using Chi-square distribution
classify.plsda PLS-DA classification
classify.simca SIMCA classification
classmodel.processRefValues Check reference class values and convert it to a factor if necessary
classres Results of classification
classres.getPerformance Calculation of classification performance parameters
confint.regcoeffs Confidence intervals for regression coefficients
constraint Class for MCR-ALS constraint
constraintAngle Method for angle constraint
constraintClosure Method for closure constraint
constraintNonNegativity Method for non-negativity constraint
constraintNorm Method for normalization constraint
constraints.list Shows information about all implemented constraints
constraintUnimod Method for unimodality constraint
crossval Generate sequence of indices for cross-validation
crossval.getParams Define parameters based on 'cv' value
crossval.regmodel Cross-validation of a regression model
crossval.simca Cross-validation of a SIMCA model
crossval.str String with description of cross-validation method

-- D --

dd.crit Calculates critical limits for distance values using Data Driven moments approach
ddmoments.param Calculates critical limits for distance values using Data Driven moments approach
ddrobust.param Calculates critical limits for distance values using Data Driven robust approach

-- E --

ellipse Create ellipse on the current plot
employ.constraint Applies constraint to a dataset
employ.prep Applies a list with preprocessing methods to a dataset

-- F --

fprintf Imitation of fprinf() function

-- G --

getCalibrationData Calibration data
getCalibrationData.pca Returns matrix with original calibration data
getCalibrationData.simcam Get calibration data
getConfidenceEllipse Compute confidence ellipse for a set of points
getConfusionMatrix Confusion matrix for classification results
getConfusionMatrix.classres Confusion matrix for classification results
getConvexHull Compute coordinates of a closed convex hull for data points
getDataLabels Create a vector with labels for plot series
getImplementedConstraints Shows a list with implemented constraints
getImplementedPrepMethods Shows a list with implemented preprocessing methods
getLabelsAsIndices Create labels as column or row indices
getLabelsAsValues Create labels from data values
getMainTitle Get main title
getPlotColors Define colors for plot series
getProbabilities Get class belonging probability
getProbabilities.pca Probabilities for residual distances
getProbabilities.simca Probabilities of class belonging for PCA/SIMCA results
getPureVariables Identifies pure variables
getRegcoeffs Get regression coefficients
getRegcoeffs.regmodel Regression coefficients for PLS model'
getRes Return list with valid results
getSelectedComponents Get selected components
getSelectivityRatio Selectivity ratio
getSelectivityRatio.pls Selectivity ratio for PLS model
getVariance.mcr Compute explained variance for MCR case
getVIPScores VIP scores
getVIPScores.pls VIP scores for PLS model

-- H --

hotelling.crit Calculate critical limits for distance values using Hotelling T2 distribution
hotelling.prob Calculate probabilities for distance values and given parameters using Hotelling T2 distribution

-- I --

imshow show image data as an image
ipls Variable selection with interval PLS
ipls.backward Runs the backward iPLS algorithm
ipls.forward Runs the forward iPLS algorithm

-- J --

jm.crit Calculate critical limits for distance values using Jackson-Mudholkar approach
jm.prob Calculate probabilities for distance values and given parameters using Hotelling T2 distribution

-- L --

ldecomp Class for storing and visualising linear decomposition of dataset (X = TP' + E)
ldecomp.getDistances Compute score and residual distances
ldecomp.getLimitsCoordinates Compute coordinates of lines or curves with critical limits
ldecomp.getLimParams Compute parameters for critical limits based on calibration results
ldecomp.getQLimits Compute critical limits for orthogonal distances (Q)
ldecomp.getT2Limits Compute critical limits for score distances (T2)
ldecomp.getVariances Compute explained variance
ldecomp.plotResiduals Residuals distance plot for a set of ldecomp objects

-- M --

mcr General class for Multivariate Curve Resolution model
mcrals Multivariate curve resolution using Alternating Least Squares
mcrals.cal Identifies pure variables
mcrals.fcnnls Fast combinatorial non-negative least squares
mcrals.nnls Non-negative least squares
mcrals.ols Ordinary least squares
mcrpure Multivariate curve resolution based on pure variables
mda.cbind A wrapper for cbind() method with proper set of attributes
mda.data2im Convert data matrix to an image
mda.df2mat Convert data frame to a matrix
mda.exclcols Exclude/hide columns in a dataset
mda.exclrows Exclude/hide rows in a dataset
mda.getattr Get data attributes
mda.getexclind Get indices of excluded rows or columns
mda.im2data Convert image to data matrix
mda.inclcols Include/unhide the excluded columns
mda.inclrows include/unhide the excluded rows
mda.purge Removes excluded (hidden) rows and colmns from data
mda.purgeCols Removes excluded (hidden) colmns from data
mda.purgeRows Removes excluded (hidden) rows from data
mda.rbind A wrapper for rbind() method with proper set of attributes
mda.setattr Set data attributes
mda.setimbg Remove background pixels from image data
mda.show Wrapper for show() method
mda.subset A wrapper for subset() method with proper set of attributed
mda.t A wrapper for t() method with proper set of attributes
mdaplot Plotting function for a single set of objects
mdaplot.areColors Check color values
mdaplot.formatValues Format vector with numeric values
mdaplot.getColors Color values for plot elements
mdaplot.getXAxisLim Calculate limits for x-axis.
mdaplot.getXTickLabels Prepare xticklabels for plot
mdaplot.getXTicks Prepare xticks for plot
mdaplot.getYAxisLim Calculate limits for y-axis.
mdaplot.getYTickLabels Prepare yticklabels for plot
mdaplot.getYTicks Prepare yticks for plot
mdaplot.plotAxes Create axes plane
mdaplot.prepareColors Prepare colors based on palette and opacity value
mdaplot.showColorbar Plot colorbar
mdaplot.showLines Plot lines
mdaplotg Plotting function for several plot series
mdaplotg.getLegend Create and return vector with legend values
mdaplotg.getXLim Compute x-axis limits for mdaplotg
mdaplotg.getYLim Compute y-axis limits for mdaplotg
mdaplotg.prepareData Prepare data for mdaplotg
mdaplotg.processParam Check mdaplotg parameters and replicate them if necessary
mdaplotg.showLegend Show legend for mdaplotg
mdaplotyy Create line plot with double y-axis
mdatools Package for Multivariate Data Analysis (Chemometrics)

-- P --

pca Principal Component Analysis
pca.cal PCA model calibration
pca.getB Low-dimensional approximation of data matrix X
pca.mvreplace Replace missing values in data
pca.nipals NIPALS based PCA algorithm
pca.run Runs one of the selected PCA methods
pca.svd Singular Values Decomposition based PCA algorithm
pcares Results of PCA decomposition
pellets Image data
people People data
pinv Pseudo-inverse matrix
plot.classres Plot function for classification results
plot.ipls Overview plot for iPLS results
plot.mcr Plot summary for MCR model
plot.pca Model overview plot for PCA
plot.pcares Plot method for PCA results object
plot.pls Model overview plot for PLS
plot.plsda Model overview plot for PLS-DA
plot.plsdares Overview plot for PLS-DA results
plot.plsres Overview plot for PLS results
plot.randtest Plot for randomization test results
plot.regcoeffs Regression coefficients plot
plot.regres Plot method for regression results
plot.simca Model overview plot for SIMCA
plot.simcam Model overview plot for SIMCAM
plot.simcamres Model overview plot for SIMCAM results
plotBars Show plot series as bars
plotBiplot Biplot
plotBiplot.pca PCA biplot
plotConfidenceEllipse Add confidence ellipse for groups of points on scatter plot
plotContributions Plot resolved contributions
plotContributions.mcr Show plot with resolved contributions
plotConvexHull Add convex hull for groups of points on scatter plot
plotCooman Cooman's plot
plotCooman.simcam Cooman's plot for SIMCAM model
plotCooman.simcamres Cooman's plot for SIMCAM results
plotCorr Correlation plot
plotCorr.randtest Correlation plot for randomization test results
plotCumVariance Variance plot
plotCumVariance.ldecomp Cumulative explained variance plot
plotCumVariance.mcr Show plot with cumulative explained variance
plotCumVariance.pca Cumulative explained variance plot for PCA model
plotDensity Show plot series as density plot (using hex binning)
plotDiscriminationPower Discrimination power plot
plotDiscriminationPower.simcam Discrimination power plot for SIMCAM model
plotDistDoF Degrees of freedom plot for both distances
plotErrorbars Show plot series as error bars
plotExtreme Shows extreme plot for SIMCA model
plotExtreme.pca Extreme plot
plotHist Statistic histogram
plotHist.randtest Histogram plot for randomization test results
plotHotellingEllipse Hotelling ellipse
plotLines Show plot series as set of lines
plotLoadings Loadings plot
plotLoadings.pca Loadings plot for PCA model
plotMisclassified Misclassification ratio plot
plotMisclassified.classmodel Misclassified ratio plot for classification model
plotMisclassified.classres Misclassified ratio plot for classification results
plotModelDistance Model distance plot
plotModelDistance.simcam Model distance plot for SIMCAM model
plotModellingPower Modelling power plot
plotPerformance Classification performance plot
plotPerformance.classmodel Performance plot for classification model
plotPerformance.classres Performance plot for classification results
plotPointsShape Add confidence ellipse or convex hull for group of points
plotPredictions Predictions plot
plotPredictions.classmodel Predictions plot for classification model
plotPredictions.classres Prediction plot for classification results
plotPredictions.regmodel Predictions plot for regression model
plotPredictions.regres Predictions plot for regression results
plotPredictions.simcam Predictions plot for SIMCAM model
plotPredictions.simcamres Prediction plot for SIMCAM results
plotProbabilities Plot for class belonging probability
plotProbabilities.classres Plot for class belonging probability
plotPurity Plot purity values
plotPurity.mcrpure Purity values plot
plotPuritySpectra Plot purity spectra
plotPuritySpectra.mcrpure Purity spectra plot
plotQDoF Degrees of freedom plot for orthogonal distance (Nh)
plotRegcoeffs Regression coefficients plot
plotRegcoeffs.regmodel Regression coefficient plot for regression model
plotRegressionLine Add regression line for data points
plotResiduals Residuals plot
plotResiduals.ldecomp Residual distance plot
plotResiduals.pca Residuals distance plot for PCA model
plotResiduals.regres Residuals plot for regression results
plotRMSE RMSE plot
plotRMSE.ipls RMSE development plot
plotRMSE.regmodel RMSE plot for regression model
plotRMSE.regres RMSE plot for regression results
plotRMSERatio Plot for ratio RMSEC/RMSECV vs RMSECV
plotRMSERatio.regmodel RMSECV/RMSEC ratio plot for regression model
plotScatter Show plot series as set of points
plotScores Scores plot
plotScores.ldecomp Scores plot
plotScores.pca Scores plot for PCA model
plotSelection Selected intervals plot
plotSelection.ipls iPLS performance plot
plotSelectivityRatio Selectivity ratio plot
plotSelectivityRatio.pls Selectivity ratio plot for PLS model
plotSensitivity Sensitivity plot
plotSensitivity.classmodel Sensitivity plot for classification model
plotSensitivity.classres Sensitivity plot for classification results
plotseries Create plot series object based on data, plot type and parameters
plotSpecificity Specificity plot
plotSpecificity.classmodel Specificity plot for classification model
plotSpecificity.classres Specificity plot for classification results
plotSpectra Plot resolved spectra
plotSpectra.mcr Show plot with resolved spectra
plotT2DoF Degrees of freedom plot for score distance (Nh)
plotVariance Variance plot
plotVariance.ldecomp Explained variance plot
plotVariance.mcr Show plot with explained variance
plotVariance.pca Explained variance plot for PCA model
plotVariance.pls Variance plot for PLS
plotVariance.plsres Explained X variance plot for PLS results
plotVIPScores VIP scores plot
plotVIPScores.pls VIP scores plot for PLS model
plotWeights Plot for PLS weights
plotWeights.pls X loadings plot for PLS
plotXCumVariance X cumulative variance plot
plotXCumVariance.pls Cumulative explained X variance plot for PLS
plotXCumVariance.plsres Explained cumulative X variance plot for PLS results
plotXLoadings X loadings plot
plotXLoadings.pls X loadings plot for PLS
plotXResiduals X residuals plot
plotXResiduals.pls Residual distance plot for decomposition of X data
plotXResiduals.plsres X residuals plot for PLS results
plotXScores X scores plot
plotXScores.pls X scores plot for PLS
plotXScores.plsres X scores plot for PLS results
plotXVariance X variance plot
plotXVariance.pls Explained X variance plot for PLS
plotXVariance.plsres Explained X variance plot for PLS results
plotXYLoadings X loadings plot
plotXYLoadings.pls XY loadings plot for PLS
plotXYResiduals Plot for XY-residuals
plotXYResiduals.pls Residual XY-distance plot
plotXYResiduals.plsres Residual distance plot
plotXYScores XY scores plot
plotXYScores.pls XY scores plot for PLS
plotXYScores.plsres XY scores plot for PLS results
plotYCumVariance Y cumulative variance plot
plotYCumVariance.pls Cumulative explained Y variance plot for PLS
plotYCumVariance.plsres Explained cumulative Y variance plot for PLS results
plotYResiduals Y residuals plot
plotYResiduals.plsres Y residuals plot for PLS results
plotYResiduals.regmodel Y residuals plot for regression model
plotYVariance Y variance plot
plotYVariance.pls Explained Y variance plot for PLS
plotYVariance.plsres Explained Y variance plot for PLS results
pls Partial Least Squares regression
pls.cal PLS model calibration
pls.getLimitsCoordinates Compute coordinates of lines or curves with critical limits
pls.getpredictions Compute predictions for response values
pls.getxdecomp Compute object with decomposition of x-values
pls.getxscores Compute matrix with X-scores
pls.getydecomp Compute object with decomposition of y-values
pls.getyscores Compute and orthogonalize matrix with Y-scores
pls.getZLimits Compute critical limits for orthogonal distances (Q)
pls.run Runs selected PLS algorithm
pls.simpls SIMPLS algorithm
pls.simplsold SIMPLS algorithm (old implementation)
plsda Partial Least Squares Discriminant Analysis
plsdares PLS-DA results
plsres PLS results
predict.mcrals MCR ALS predictions
predict.mcrpure MCR predictions
predict.pca PCA predictions
predict.pls PLS predictions
predict.plsda PLS-DA predictions
predict.simca SIMCA predictions
predict.simcam SIMCA multiple classes predictions
prep Class for preprocessing object
prep.alsbasecorr Baseline correction using asymetric least squares
prep.autoscale Autoscale values
prep.generic Generic function for preprocessing
prep.list Shows information about all implemented preprocessing methods.
prep.msc Multiplicative Scatter Correction transformation
prep.norm Normalization
prep.ref2km Kubelka-Munk transformation
prep.savgol Savytzky-Golay filter
prep.snv Standard Normal Variate transformation
prep.transform Transformation
prep.varsel Variable selection
preparePlotData Take dataset and prepare them for plot
prepCalData Prepares calibration data
print.classres Print information about classification result object
print.ipls Print method for iPLS
print.ldecomp Print method for linear decomposition
print.mcrals Print method for mcrpure object
print.mcrpure Print method for mcrpure object
print.pca Print method for PCA model object
print.pcares Print method for PCA results object
print.pls Print method for PLS model object
print.plsda Print method for PLS-DA model object
print.plsdares Print method for PLS-DA results object
print.plsres print method for PLS results object
print.randtest Print method for randtest object
print.regcoeffs print method for regression coefficients class
print.regmodel Print method for PLS model object
print.regres print method for regression results object
print.simca Print method for SIMCA model object
print.simcam Print method for SIMCAM model object
print.simcamres Print method for SIMCAM results object
print.simcares Print method for SIMCA results object

-- R --

randtest Randomization test for PLS regression
regcoeffs Regression coefficients
regcoeffs.getStats Distribution statistics for regression coeffificents
regres Regression results
regres.bias Prediction bias
regres.err Error of prediction
regres.r2 Determination coefficient
regres.rmse RMSE
regres.slope Slope
regress.addattrs Add names and attributes to matrix with statistics
repmat Replicate matric x

-- S --

selectCompNum Select optimal number of components for a model
selectCompNum.pca Select optimal number of components for PCA model
selectCompNum.pls Select optimal number of components for PLS model
selratio Selectivity ratio calculation
setDistanceLimits Set residual distance limits
setDistanceLimits.pca Compute and set statistical limits for Q and T2 residual distances.
setDistanceLimits.pls Compute and set statistical limits for residual distances.
showDistanceLimits Show residual distance limits
showLabels Show labels on plot
showPredictions Predictions
showPredictions.classres Show predicted class values
simca SIMCA one-class classification
simcam SIMCA multiclass classification
simcam.getPerformanceStats Performance statistics for SIMCAM model
simcamres Results of SIMCA multiclass classification
simcares Results of SIMCA one-class classification
simdata Spectral data of polyaromatic hydrocarbons mixing
splitExcludedData Split the excluded part of data
splitPlotData Split dataset to x and y values depending on plot type
summary.classres Summary statistics about classification result object
summary.ipls Summary for iPLS results
summary.ldecomp Summary statistics for linear decomposition
summary.mcrals Summary method for mcrals object
summary.mcrpure Summary method for mcrpure object
summary.pca Summary method for PCA model object
summary.pcares Summary method for PCA results object
summary.pls Summary method for PLS model object
summary.plsda Summary method for PLS-DA model object
summary.plsdares Summary method for PLS-DA results object
summary.plsres summary method for PLS results object
summary.randtest Summary method for randtest object
summary.regcoeffs Summary method for regcoeffs object
summary.regmodel Summary method for regression model object
summary.regres summary method for regression results object
summary.simca Summary method for SIMCA model object
summary.simcam Summary method for SIMCAM model object
summary.simcamres Summary method for SIMCAM results object
summary.simcares Summary method for SIMCA results object

-- U --

unmix.mcrpure Unmix spectral data using pure variables estimated before

-- V --

vipscores VIP scores for PLS model