A C D E F G H I J L M P R S U V
as.matrix.classres | as.matrix method for classification results |
as.matrix.ldecomp | as.matrix method for ldecomp object |
as.matrix.plsdares | as.matrix method for PLS-DA results |
as.matrix.plsres | as.matrix method for PLS results |
as.matrix.regcoeffs | as.matrix method for regression coefficients class |
as.matrix.regres | as.matrix method for regression results |
as.matrix.simcamres | as.matrix method for SIMCAM results |
as.matrix.simcares | as.matrix method for SIMCA classification results |
capitalize | Capitalize text or vector with text values |
carbs | Raman spectra of carbonhydrates |
categorize | Categorize PCA results |
categorize.pca | Categorize PCA results based on orthogonal and score distances. |
categorize.pls | Categorize data rows based on PLS results and critical limits for total distance. |
chisq.crit | Calculates critical limits for distance values using Chi-square distribution |
chisq.prob | Calculate probabilities for distance values using Chi-square distribution |
classify.plsda | PLS-DA classification |
classify.simca | SIMCA classification |
classmodel.processRefValues | Check reference class values and convert it to a factor if necessary |
classres | Results of classification |
classres.getPerformance | Calculation of classification performance parameters |
confint.regcoeffs | Confidence intervals for regression coefficients |
constraint | Class for MCR-ALS constraint |
constraintAngle | Method for angle constraint |
constraintClosure | Method for closure constraint |
constraintNonNegativity | Method for non-negativity constraint |
constraintNorm | Method for normalization constraint |
constraints.list | Shows information about all implemented constraints |
constraintUnimod | Method for unimodality constraint |
crossval | Generate sequence of indices for cross-validation |
crossval.getParams | Define parameters based on 'cv' value |
crossval.regmodel | Cross-validation of a regression model |
crossval.simca | Cross-validation of a SIMCA model |
crossval.str | String with description of cross-validation method |
dd.crit | Calculates critical limits for distance values using Data Driven moments approach |
ddmoments.param | Calculates critical limits for distance values using Data Driven moments approach |
ddrobust.param | Calculates critical limits for distance values using Data Driven robust approach |
ellipse | Create ellipse on the current plot |
employ.constraint | Applies constraint to a dataset |
employ.prep | Applies a list with preprocessing methods to a dataset |
fprintf | Imitation of fprinf() function |
getCalibrationData | Calibration data |
getCalibrationData.pca | Returns matrix with original calibration data |
getCalibrationData.simcam | Get calibration data |
getConfidenceEllipse | Compute confidence ellipse for a set of points |
getConfusionMatrix | Confusion matrix for classification results |
getConfusionMatrix.classres | Confusion matrix for classification results |
getConvexHull | Compute coordinates of a closed convex hull for data points |
getDataLabels | Create a vector with labels for plot series |
getImplementedConstraints | Shows a list with implemented constraints |
getImplementedPrepMethods | Shows a list with implemented preprocessing methods |
getLabelsAsIndices | Create labels as column or row indices |
getLabelsAsValues | Create labels from data values |
getMainTitle | Get main title |
getPlotColors | Define colors for plot series |
getProbabilities | Get class belonging probability |
getProbabilities.pca | Probabilities for residual distances |
getProbabilities.simca | Probabilities of class belonging for PCA/SIMCA results |
getPureVariables | Identifies pure variables |
getRegcoeffs | Get regression coefficients |
getRegcoeffs.regmodel | Regression coefficients for PLS model' |
getRes | Return list with valid results |
getSelectedComponents | Get selected components |
getSelectivityRatio | Selectivity ratio |
getSelectivityRatio.pls | Selectivity ratio for PLS model |
getVariance.mcr | Compute explained variance for MCR case |
getVIPScores | VIP scores |
getVIPScores.pls | VIP scores for PLS model |
hotelling.crit | Calculate critical limits for distance values using Hotelling T2 distribution |
hotelling.prob | Calculate probabilities for distance values and given parameters using Hotelling T2 distribution |
imshow | show image data as an image |
ipls | Variable selection with interval PLS |
ipls.backward | Runs the backward iPLS algorithm |
ipls.forward | Runs the forward iPLS algorithm |
jm.crit | Calculate critical limits for distance values using Jackson-Mudholkar approach |
jm.prob | Calculate probabilities for distance values and given parameters using Hotelling T2 distribution |
ldecomp | Class for storing and visualising linear decomposition of dataset (X = TP' + E) |
ldecomp.getDistances | Compute score and residual distances |
ldecomp.getLimitsCoordinates | Compute coordinates of lines or curves with critical limits |
ldecomp.getLimParams | Compute parameters for critical limits based on calibration results |
ldecomp.getQLimits | Compute critical limits for orthogonal distances (Q) |
ldecomp.getT2Limits | Compute critical limits for score distances (T2) |
ldecomp.getVariances | Compute explained variance |
ldecomp.plotResiduals | Residuals distance plot for a set of ldecomp objects |
mcr | General class for Multivariate Curve Resolution model |
mcrals | Multivariate curve resolution using Alternating Least Squares |
mcrals.cal | Identifies pure variables |
mcrals.fcnnls | Fast combinatorial non-negative least squares |
mcrals.nnls | Non-negative least squares |
mcrals.ols | Ordinary least squares |
mcrpure | Multivariate curve resolution based on pure variables |
mda.cbind | A wrapper for cbind() method with proper set of attributes |
mda.data2im | Convert data matrix to an image |
mda.df2mat | Convert data frame to a matrix |
mda.exclcols | Exclude/hide columns in a dataset |
mda.exclrows | Exclude/hide rows in a dataset |
mda.getattr | Get data attributes |
mda.getexclind | Get indices of excluded rows or columns |
mda.im2data | Convert image to data matrix |
mda.inclcols | Include/unhide the excluded columns |
mda.inclrows | include/unhide the excluded rows |
mda.purge | Removes excluded (hidden) rows and colmns from data |
mda.purgeCols | Removes excluded (hidden) colmns from data |
mda.purgeRows | Removes excluded (hidden) rows from data |
mda.rbind | A wrapper for rbind() method with proper set of attributes |
mda.setattr | Set data attributes |
mda.setimbg | Remove background pixels from image data |
mda.show | Wrapper for show() method |
mda.subset | A wrapper for subset() method with proper set of attributed |
mda.t | A wrapper for t() method with proper set of attributes |
mdaplot | Plotting function for a single set of objects |
mdaplot.areColors | Check color values |
mdaplot.formatValues | Format vector with numeric values |
mdaplot.getColors | Color values for plot elements |
mdaplot.getXAxisLim | Calculate limits for x-axis. |
mdaplot.getXTickLabels | Prepare xticklabels for plot |
mdaplot.getXTicks | Prepare xticks for plot |
mdaplot.getYAxisLim | Calculate limits for y-axis. |
mdaplot.getYTickLabels | Prepare yticklabels for plot |
mdaplot.getYTicks | Prepare yticks for plot |
mdaplot.plotAxes | Create axes plane |
mdaplot.prepareColors | Prepare colors based on palette and opacity value |
mdaplot.showColorbar | Plot colorbar |
mdaplot.showLines | Plot lines |
mdaplotg | Plotting function for several plot series |
mdaplotg.getLegend | Create and return vector with legend values |
mdaplotg.getXLim | Compute x-axis limits for mdaplotg |
mdaplotg.getYLim | Compute y-axis limits for mdaplotg |
mdaplotg.prepareData | Prepare data for mdaplotg |
mdaplotg.processParam | Check mdaplotg parameters and replicate them if necessary |
mdaplotg.showLegend | Show legend for mdaplotg |
mdaplotyy | Create line plot with double y-axis |
mdatools | Package for Multivariate Data Analysis (Chemometrics) |
pca | Principal Component Analysis |
pca.cal | PCA model calibration |
pca.getB | Low-dimensional approximation of data matrix X |
pca.mvreplace | Replace missing values in data |
pca.nipals | NIPALS based PCA algorithm |
pca.run | Runs one of the selected PCA methods |
pca.svd | Singular Values Decomposition based PCA algorithm |
pcares | Results of PCA decomposition |
pellets | Image data |
people | People data |
pinv | Pseudo-inverse matrix |
plot.classres | Plot function for classification results |
plot.ipls | Overview plot for iPLS results |
plot.mcr | Plot summary for MCR model |
plot.pca | Model overview plot for PCA |
plot.pcares | Plot method for PCA results object |
plot.pls | Model overview plot for PLS |
plot.plsda | Model overview plot for PLS-DA |
plot.plsdares | Overview plot for PLS-DA results |
plot.plsres | Overview plot for PLS results |
plot.randtest | Plot for randomization test results |
plot.regcoeffs | Regression coefficients plot |
plot.regres | Plot method for regression results |
plot.simca | Model overview plot for SIMCA |
plot.simcam | Model overview plot for SIMCAM |
plot.simcamres | Model overview plot for SIMCAM results |
plotBars | Show plot series as bars |
plotBiplot | Biplot |
plotBiplot.pca | PCA biplot |
plotConfidenceEllipse | Add confidence ellipse for groups of points on scatter plot |
plotContributions | Plot resolved contributions |
plotContributions.mcr | Show plot with resolved contributions |
plotConvexHull | Add convex hull for groups of points on scatter plot |
plotCooman | Cooman's plot |
plotCooman.simcam | Cooman's plot for SIMCAM model |
plotCooman.simcamres | Cooman's plot for SIMCAM results |
plotCorr | Correlation plot |
plotCorr.randtest | Correlation plot for randomization test results |
plotCumVariance | Variance plot |
plotCumVariance.ldecomp | Cumulative explained variance plot |
plotCumVariance.mcr | Show plot with cumulative explained variance |
plotCumVariance.pca | Cumulative explained variance plot for PCA model |
plotDensity | Show plot series as density plot (using hex binning) |
plotDiscriminationPower | Discrimination power plot |
plotDiscriminationPower.simcam | Discrimination power plot for SIMCAM model |
plotDistDoF | Degrees of freedom plot for both distances |
plotErrorbars | Show plot series as error bars |
plotExtreme | Shows extreme plot for SIMCA model |
plotExtreme.pca | Extreme plot |
plotHist | Statistic histogram |
plotHist.randtest | Histogram plot for randomization test results |
plotHotellingEllipse | Hotelling ellipse |
plotLines | Show plot series as set of lines |
plotLoadings | Loadings plot |
plotLoadings.pca | Loadings plot for PCA model |
plotMisclassified | Misclassification ratio plot |
plotMisclassified.classmodel | Misclassified ratio plot for classification model |
plotMisclassified.classres | Misclassified ratio plot for classification results |
plotModelDistance | Model distance plot |
plotModelDistance.simcam | Model distance plot for SIMCAM model |
plotModellingPower | Modelling power plot |
plotPerformance | Classification performance plot |
plotPerformance.classmodel | Performance plot for classification model |
plotPerformance.classres | Performance plot for classification results |
plotPointsShape | Add confidence ellipse or convex hull for group of points |
plotPredictions | Predictions plot |
plotPredictions.classmodel | Predictions plot for classification model |
plotPredictions.classres | Prediction plot for classification results |
plotPredictions.regmodel | Predictions plot for regression model |
plotPredictions.regres | Predictions plot for regression results |
plotPredictions.simcam | Predictions plot for SIMCAM model |
plotPredictions.simcamres | Prediction plot for SIMCAM results |
plotProbabilities | Plot for class belonging probability |
plotProbabilities.classres | Plot for class belonging probability |
plotPurity | Plot purity values |
plotPurity.mcrpure | Purity values plot |
plotPuritySpectra | Plot purity spectra |
plotPuritySpectra.mcrpure | Purity spectra plot |
plotQDoF | Degrees of freedom plot for orthogonal distance (Nh) |
plotRegcoeffs | Regression coefficients plot |
plotRegcoeffs.regmodel | Regression coefficient plot for regression model |
plotRegressionLine | Add regression line for data points |
plotResiduals | Residuals plot |
plotResiduals.ldecomp | Residual distance plot |
plotResiduals.pca | Residuals distance plot for PCA model |
plotResiduals.regres | Residuals plot for regression results |
plotRMSE | RMSE plot |
plotRMSE.ipls | RMSE development plot |
plotRMSE.regmodel | RMSE plot for regression model |
plotRMSE.regres | RMSE plot for regression results |
plotRMSERatio | Plot for ratio RMSEC/RMSECV vs RMSECV |
plotRMSERatio.regmodel | RMSECV/RMSEC ratio plot for regression model |
plotScatter | Show plot series as set of points |
plotScores | Scores plot |
plotScores.ldecomp | Scores plot |
plotScores.pca | Scores plot for PCA model |
plotSelection | Selected intervals plot |
plotSelection.ipls | iPLS performance plot |
plotSelectivityRatio | Selectivity ratio plot |
plotSelectivityRatio.pls | Selectivity ratio plot for PLS model |
plotSensitivity | Sensitivity plot |
plotSensitivity.classmodel | Sensitivity plot for classification model |
plotSensitivity.classres | Sensitivity plot for classification results |
plotseries | Create plot series object based on data, plot type and parameters |
plotSpecificity | Specificity plot |
plotSpecificity.classmodel | Specificity plot for classification model |
plotSpecificity.classres | Specificity plot for classification results |
plotSpectra | Plot resolved spectra |
plotSpectra.mcr | Show plot with resolved spectra |
plotT2DoF | Degrees of freedom plot for score distance (Nh) |
plotVariance | Variance plot |
plotVariance.ldecomp | Explained variance plot |
plotVariance.mcr | Show plot with explained variance |
plotVariance.pca | Explained variance plot for PCA model |
plotVariance.pls | Variance plot for PLS |
plotVariance.plsres | Explained X variance plot for PLS results |
plotVIPScores | VIP scores plot |
plotVIPScores.pls | VIP scores plot for PLS model |
plotWeights | Plot for PLS weights |
plotWeights.pls | X loadings plot for PLS |
plotXCumVariance | X cumulative variance plot |
plotXCumVariance.pls | Cumulative explained X variance plot for PLS |
plotXCumVariance.plsres | Explained cumulative X variance plot for PLS results |
plotXLoadings | X loadings plot |
plotXLoadings.pls | X loadings plot for PLS |
plotXResiduals | X residuals plot |
plotXResiduals.pls | Residual distance plot for decomposition of X data |
plotXResiduals.plsres | X residuals plot for PLS results |
plotXScores | X scores plot |
plotXScores.pls | X scores plot for PLS |
plotXScores.plsres | X scores plot for PLS results |
plotXVariance | X variance plot |
plotXVariance.pls | Explained X variance plot for PLS |
plotXVariance.plsres | Explained X variance plot for PLS results |
plotXYLoadings | X loadings plot |
plotXYLoadings.pls | XY loadings plot for PLS |
plotXYResiduals | Plot for XY-residuals |
plotXYResiduals.pls | Residual XY-distance plot |
plotXYResiduals.plsres | Residual distance plot |
plotXYScores | XY scores plot |
plotXYScores.pls | XY scores plot for PLS |
plotXYScores.plsres | XY scores plot for PLS results |
plotYCumVariance | Y cumulative variance plot |
plotYCumVariance.pls | Cumulative explained Y variance plot for PLS |
plotYCumVariance.plsres | Explained cumulative Y variance plot for PLS results |
plotYResiduals | Y residuals plot |
plotYResiduals.plsres | Y residuals plot for PLS results |
plotYResiduals.regmodel | Y residuals plot for regression model |
plotYVariance | Y variance plot |
plotYVariance.pls | Explained Y variance plot for PLS |
plotYVariance.plsres | Explained Y variance plot for PLS results |
pls | Partial Least Squares regression |
pls.cal | PLS model calibration |
pls.getLimitsCoordinates | Compute coordinates of lines or curves with critical limits |
pls.getpredictions | Compute predictions for response values |
pls.getxdecomp | Compute object with decomposition of x-values |
pls.getxscores | Compute matrix with X-scores |
pls.getydecomp | Compute object with decomposition of y-values |
pls.getyscores | Compute and orthogonalize matrix with Y-scores |
pls.getZLimits | Compute critical limits for orthogonal distances (Q) |
pls.run | Runs selected PLS algorithm |
pls.simpls | SIMPLS algorithm |
pls.simplsold | SIMPLS algorithm (old implementation) |
plsda | Partial Least Squares Discriminant Analysis |
plsdares | PLS-DA results |
plsres | PLS results |
predict.mcrals | MCR ALS predictions |
predict.mcrpure | MCR predictions |
predict.pca | PCA predictions |
predict.pls | PLS predictions |
predict.plsda | PLS-DA predictions |
predict.simca | SIMCA predictions |
predict.simcam | SIMCA multiple classes predictions |
prep | Class for preprocessing object |
prep.alsbasecorr | Baseline correction using asymetric least squares |
prep.autoscale | Autoscale values |
prep.generic | Generic function for preprocessing |
prep.list | Shows information about all implemented preprocessing methods. |
prep.msc | Multiplicative Scatter Correction transformation |
prep.norm | Normalization |
prep.ref2km | Kubelka-Munk transformation |
prep.savgol | Savytzky-Golay filter |
prep.snv | Standard Normal Variate transformation |
prep.transform | Transformation |
prep.varsel | Variable selection |
preparePlotData | Take dataset and prepare them for plot |
prepCalData | Prepares calibration data |
print.classres | Print information about classification result object |
print.ipls | Print method for iPLS |
print.ldecomp | Print method for linear decomposition |
print.mcrals | Print method for mcrpure object |
print.mcrpure | Print method for mcrpure object |
print.pca | Print method for PCA model object |
print.pcares | Print method for PCA results object |
print.pls | Print method for PLS model object |
print.plsda | Print method for PLS-DA model object |
print.plsdares | Print method for PLS-DA results object |
print.plsres | print method for PLS results object |
print.randtest | Print method for randtest object |
print.regcoeffs | print method for regression coefficients class |
print.regmodel | Print method for PLS model object |
print.regres | print method for regression results object |
print.simca | Print method for SIMCA model object |
print.simcam | Print method for SIMCAM model object |
print.simcamres | Print method for SIMCAM results object |
print.simcares | Print method for SIMCA results object |
randtest | Randomization test for PLS regression |
regcoeffs | Regression coefficients |
regcoeffs.getStats | Distribution statistics for regression coeffificents |
regres | Regression results |
regres.bias | Prediction bias |
regres.err | Error of prediction |
regres.r2 | Determination coefficient |
regres.rmse | RMSE |
regres.slope | Slope |
regress.addattrs | Add names and attributes to matrix with statistics |
repmat | Replicate matric x |
selectCompNum | Select optimal number of components for a model |
selectCompNum.pca | Select optimal number of components for PCA model |
selectCompNum.pls | Select optimal number of components for PLS model |
selratio | Selectivity ratio calculation |
setDistanceLimits | Set residual distance limits |
setDistanceLimits.pca | Compute and set statistical limits for Q and T2 residual distances. |
setDistanceLimits.pls | Compute and set statistical limits for residual distances. |
showDistanceLimits | Show residual distance limits |
showLabels | Show labels on plot |
showPredictions | Predictions |
showPredictions.classres | Show predicted class values |
simca | SIMCA one-class classification |
simcam | SIMCA multiclass classification |
simcam.getPerformanceStats | Performance statistics for SIMCAM model |
simcamres | Results of SIMCA multiclass classification |
simcares | Results of SIMCA one-class classification |
simdata | Spectral data of polyaromatic hydrocarbons mixing |
splitExcludedData | Split the excluded part of data |
splitPlotData | Split dataset to x and y values depending on plot type |
summary.classres | Summary statistics about classification result object |
summary.ipls | Summary for iPLS results |
summary.ldecomp | Summary statistics for linear decomposition |
summary.mcrals | Summary method for mcrals object |
summary.mcrpure | Summary method for mcrpure object |
summary.pca | Summary method for PCA model object |
summary.pcares | Summary method for PCA results object |
summary.pls | Summary method for PLS model object |
summary.plsda | Summary method for PLS-DA model object |
summary.plsdares | Summary method for PLS-DA results object |
summary.plsres | summary method for PLS results object |
summary.randtest | Summary method for randtest object |
summary.regcoeffs | Summary method for regcoeffs object |
summary.regmodel | Summary method for regression model object |
summary.regres | summary method for regression results object |
summary.simca | Summary method for SIMCA model object |
summary.simcam | Summary method for SIMCAM model object |
summary.simcamres | Summary method for SIMCAM results object |
summary.simcares | Summary method for SIMCA results object |
unmix.mcrpure | Unmix spectral data using pure variables estimated before |
vipscores | VIP scores for PLS model |