CFA_data |
CFA example data |
compute_sc |
Compute the GLM systematic component. |
cp_AIC |
Compute Akaike's information criterion |
cp_BIC |
Compute bayesian information criterion |
cp_F |
Compute F statistic |
cp_gR2 |
Compute generalized R-squared |
cp_LRT |
Compute likelihood ratio test |
cp_thrs_LLS |
Compute threshold values based on Log-likelihood values |
cp_thrs_NOR |
Compute normalized association measure |
cp_thrs_PR2 |
Compute threshold values based on the pseudo R2 |
cp_validation_fit |
Compute fit measure(s) on the validation data set |
cv_average |
Average fit measures computed in the K-fold cross-validation procedure |
cv_choose |
Cross-validation choice |
cv_gspcr |
Cross-validation of Generalized Principal Component Regression |
est_gspcr |
Estimate Generalized Principal Component Regression |
est_univ_mods |
Estimate simple GLM models |
GSPCRexdata |
GSPCR example data |
LL_baseline |
Baseline category logistic regression log-likelihood |
LL_binomial |
Binomial log-likelihood |
LL_cumulative |
Proportional odds model log-likelihood |
LL_gaussian |
Gaussian log-likelihood |
LL_newdata |
Log-Likelihood for new data |
LL_poisson |
Poisson regression log-likelihood |
pca_mix |
PCA of a mixture of numerical and categorical data |
plot.gspcrcv |
Plot the cross-validation solution path for the GSPCR algorithm |
predict.gspcrout |
Predict GSPCR model dependent variable scores |