Generalized Supervised Principal Component Regression


[Up] [Top]

Documentation for package ‘gspcr’ version 0.9.5

Help Pages

CFA_data CFA example data
compute_sc Compute the GLM systematic component.
cp_AIC Compute Akaike's information criterion
cp_BIC Compute bayesian information criterion
cp_F Compute F statistic
cp_gR2 Compute generalized R-squared
cp_LRT Compute likelihood ratio test
cp_thrs_LLS Compute threshold values based on Log-likelihood values
cp_thrs_NOR Compute normalized association measure
cp_thrs_PR2 Compute threshold values based on the pseudo R2
cp_validation_fit Compute fit measure(s) on the validation data set
cv_average Average fit measures computed in the K-fold cross-validation procedure
cv_choose Cross-validation choice
cv_gspcr Cross-validation of Generalized Principal Component Regression
est_gspcr Estimate Generalized Principal Component Regression
est_univ_mods Estimate simple GLM models
GSPCRexdata GSPCR example data
LL_baseline Baseline category logistic regression log-likelihood
LL_binomial Binomial log-likelihood
LL_cumulative Proportional odds model log-likelihood
LL_gaussian Gaussian log-likelihood
LL_newdata Log-Likelihood for new data
LL_poisson Poisson regression log-likelihood
pca_mix PCA of a mixture of numerical and categorical data
plot.gspcrcv Plot the cross-validation solution path for the GSPCR algorithm
predict.gspcrout Predict GSPCR model dependent variable scores