pca_mix {gspcr} | R Documentation |
PCA of a mixture of numerical and categorical data
Description
Wrapper for the PCAmixdata::PCAmix()
function to be used in the main cross-validation procedure.
Usage
pca_mix(X_tr, X_va, npcs = 1)
Arguments
X_tr |
data.frame of training data |
X_va |
data.frame of validation data |
npcs |
number of principal components to keep |
Value
a list of training and validation PC scores
Author(s)
Edoardo Costantini, 2023
References
Chavent M, Kuentz V, Labenne A, Liquet B, Saracco J (2017). PCAmixdata: Multivariate Analysis of Mixed Data. R package version 3.1, https://CRAN.R-project.org/package=PCAmixdata.
Examples
# Example inputs
data(wine, package = "FactoMineR")
X <- wine[, c(1, 2, 16, 22)]
X$Label <- factor(X$Label)
X$Soil <- factor(X$Soil)
X_tr <- X[1:15, ]
X_va <- X[16:21, ]
npcs <- 2
# Example use
pca_mix(
X_tr = X[1:15, ],
X_va = X[16:21, ],
npcs = 2
)
[Package gspcr version 0.9.5 Index]