cp_AIC {gspcr} | R Documentation |
Compute Akaike's information criterion
Description
Computes Akaike's information criterion for comparing competing models.
Usage
cp_AIC(ll, k)
Arguments
ll |
numeric vector of length 1 (or an object of class 'logLik') storing the log-likelihood of the model of interest |
k |
numeric vector of length 1 storing the number of parameters estimated by the model |
Value
numeric vector of length 1 storing the computed AIC.
Author(s)
Edoardo Costantini, 2023
Examples
# Fit some model
lm_out <- lm(mpg ~ cyl + disp, data = mtcars)
# Compute AIC with your function
AIC_M <- cp_AIC(
ll = logLik(lm_out),
k = length(coef(lm_out)) + 1 # intercept + reg coefs + error variance
)
[Package gspcr version 0.9.5 Index]