Bayesian Inference for A|B and Bandit Marketing Tests


[Up] [Top]

Documentation for package ‘grizbayr’ version 1.3.5

Help Pages

calculate_multi_rev_per_session Calculate Multi Rev Per Session
calculate_total_cm Calculate Total CM
estimate_all_values Estimate All Values
estimate_lift Estimate Lift Distribution
estimate_lift_vs_baseline Estimate Lift vs Baseline
estimate_loss Estimate Loss
estimate_value_remaining Estimate Value Remaining
estimate_win_prob Estimate Win Probability
estimate_win_prob_given_posterior Estimate Win Probability Given Posterior Distribution
estimate_win_prob_vs_baseline Estimate Win Probability vs. Baseline
estimate_win_prob_vs_baseline_given_posterior Estimate Win Probability vs. Baseline Given Posterior
find_best_option Find Best Option
impute_missing_options Impute Missing Options
is_prior_valid Is Prior Valid
is_winner_max Is Winner Max
rdirichlet Random Dirichlet
sample_cm_per_click Sample CM Per Click
sample_conv_rate Sample Conversion Rate
sample_cpa Sample Cost Per Activation (CPA)
sample_cpc Sample Cost Per Click
sample_ctr Sample Click Through Rate
sample_from_posterior Sample From Posterior
sample_multi_rev_per_session Sample Multiple Revenue Per Session
sample_page_views_per_session Sample Page Views Per Session (Visit)
sample_response_rate Sample Response Rate
sample_rev_per_session Sample Rev Per Session
sample_session_duration Sample Session Duration
sample_total_cm Sample Total CM (Given Impression Count)
update_beta Update Beta
update_dirichlet Update Dirichlet Distribution
update_gamma Update Gamma
validate_data_values Validate Data Values
validate_input_column Validate Input Column
validate_input_df Validate Input DataFrame
validate_posterior_samples Validate Posterior Samples Dataframe
validate_priors Validate Priors
validate_wrt_option Validate With Respect To Option