variogramModelPlot {gmGeostats}R Documentation

Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models

Description

Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models

Usage

variogramModelPlot(vg, ...)

## S3 method for class 'gmEVario'
variogramModelPlot(
  vg,
  model = NULL,
  col = rev(rainbow(ndirections(vg))),
  commonAxis = FALSE,
  newfig = TRUE,
  closeplot = TRUE,
  ...
)

Arguments

vg

empirical variogram or covariance function

...

further parameters to underlying plot or matplot functions

model

optional, theoretical variogram or covariance function

col

colors to use for the several directional variograms

commonAxis

boolean, should all plots in a row share the same vertical axis?

newfig

boolean, should a new figure be created? otherwise user should ensure the device space is appropriately managed

closeplot

logical, should the plot be left open (FALSE) for further changes, or be frozen (TRUE)? defaults to TRUE

Value

The function is primarily called for producing a plot. However, it invisibly returns the graphical parameters active before the call occurred. This is useful for constructing complex diagrams, by adding layers of info. If you want to "freeze" your plot, embed your call in another call to par, e.g. par(variogramModelPlot(...)); if you want to leave the plot open for further changes give the extra argument closeplot=FALSE.

Functions

See Also

logratioVariogram()

Other variogramModelPlot: variogramModelPlot.gstatVariogram(), variogramModelPlot.logratioVariogram()

Other gmEVario functions: as.gmEVario.gstatVariogram(), gsi.EVario2D(), gsi.EVario3D(), ndirections(), plot.gmEVario()

Other gmCgram functions: [.gmCgram(), [[.gmCgram(), as.function.gmCgram(), as.gmCgram.variogramModelList(), length.gmCgram(), ndirections(), plot.gmCgram()

Examples

utils::data("variogramModels")
v1 = setCgram(type=vg.Gau, sill=diag(3)+0.5, anisRanges = 5e-1*diag(c(3,0.5)))
v2 = setCgram(type=vg.Exp, sill=0.3*diag(3), anisRanges = 5e-2*diag(2))
vm = v1+v2
plot(vm, closeplot=TRUE)
library(gstat)
data("jura", package = "gstat")
X = as.matrix(jura.pred[,1:2])
Z = as.matrix(jura.pred[,c("Zn","Cd","Pb")])
vge = gsi.EVario2D(X,Z)
variogramModelPlot(vge, vm)



[Package gmGeostats version 0.11.3 Index]