A C D E F G H I K L M N P R S T U V W X misc
| accuracy | Compute accuracy and precision | 
| accuracy.data.frame | Compute accuracy and precision | 
| accuracy.DataFrameStack | Compute accuracy and precision | 
| ana | Flow anamorphosis transform Compute a transformation that gaussianizes a certain data set | 
| anaBackward | Backward gaussian anamorphosis backward transformation to multivariate gaussian scores | 
| anaForward | Forward gaussian anamorphosis forward transformation to multivariate gaussian scores | 
| anis2D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios | 
| anis3D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios | 
| AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, | 
| AnisotropyScaling | Convert to anisotropy scaling matrix | 
| anis_GSLIBpar2A | Produce anisotropy scaling matrix from angle and anisotropy ratios | 
| as.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, | 
| as.AnisotropyRangeMatrix.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, | 
| as.AnisotropyRangeMatrix.AnisotropyScaling | Force a matrix to be anisotropy range matrix, | 
| as.AnisotropyRangeMatrix.default | Force a matrix to be anisotropy range matrix, | 
| as.AnisotropyScaling | Convert to anisotropy scaling matrix | 
| as.AnisotropyScaling.AnisotropyRangeMatrix | Convert to anisotropy scaling matrix | 
| as.AnisotropyScaling.AnisotropyScaling | Convert to anisotropy scaling matrix | 
| as.AnisotropyScaling.numeric | Convert to anisotropy scaling matrix | 
| as.array.DataFrameStack | Convert a stacked data frame into an array | 
| as.CompLinModCoReg | Recast a model to the variogram model of package "compositions" | 
| as.CompLinModCoReg.CompLinModCoReg | Recast a model to the variogram model of package "compositions" | 
| as.CompLinModCoReg.LMCAnisCompo | Recast a model to the variogram model of package "compositions" | 
| as.DataFrameStack | Create a data frame stack | 
| as.DataFrameStack.array | Create a data frame stack | 
| as.DataFrameStack.data.frame | Create a data frame stack | 
| as.DataFrameStack.list | Create a data frame stack | 
| as.directorVector | Express a direction as a director vector | 
| as.directorVector.azimuth | Express a direction as a director vector | 
| as.directorVector.azimuthInterval | Express a direction as a director vector | 
| as.directorVector.default | Express a direction as a director vector | 
| as.function.gmCgram | Convert a gmCgram object to an (evaluable) function | 
| as.gmCgram | Convert theoretical structural functions to gmCgram format | 
| as.gmCgram.default | Convert theoretical structural functions to gmCgram format | 
| as.gmCgram.LMCAnisCompo | Convert theoretical structural functions to gmCgram format | 
| as.gmCgram.variogramModel | Convert theoretical structural functions to gmCgram format | 
| as.gmCgram.variogramModelList | Convert theoretical structural functions to gmCgram format | 
| as.gmEVario | Convert empirical structural function to gmEVario format | 
| as.gmEVario.default | Convert empirical structural function to gmEVario format | 
| as.gmEVario.gstatVariogram | Convert empirical structural function to gmEVario format | 
| as.gmEVario.logratioVariogram | Convert empirical structural function to gmEVario format | 
| as.gmEVario.logratioVariogramAnisotropy | Convert empirical structural function to gmEVario format | 
| as.gmSpatialModel | Recast spatial object to gmSpatialModel format | 
| as.gmSpatialModel.default | Recast spatial object to gmSpatialModel format | 
| as.gmSpatialModel.gstat | Recast spatial object to gmSpatialModel format | 
| as.gstat | Convert a regionalized data container to gstat | 
| as.gstat-method | Conditional spatial model data container | 
| as.gstat.default | Convert a regionalized data container to gstat | 
| as.gstatVariogram | Represent an empirical variogram in "gstatVariogram" format | 
| as.gstatVariogram.default | Represent an empirical variogram in "gstatVariogram" format | 
| as.gstatVariogram.gmEVario | Represent an empirical variogram in "gstatVariogram" format | 
| as.gstatVariogram.logratioVariogram | Represent an empirical variogram in "gstatVariogram" format | 
| as.gstatVariogram.logratioVariogramAnisotropy | Represent an empirical variogram in "gstatVariogram" format | 
| as.list.DataFrameStack | Convert a stacked data frame into a list of data.frames | 
| as.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo | 
| as.LMCAnisCompo.CompLinModCoReg | Recast compositional variogram model to format LMCAnisCompo | 
| as.LMCAnisCompo.gmCgram | Recast compositional variogram model to format LMCAnisCompo | 
| as.LMCAnisCompo.gstat | Recast compositional variogram model to format LMCAnisCompo | 
| as.LMCAnisCompo.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo | 
| as.LMCAnisCompo.variogramModelList | Recast compositional variogram model to format LMCAnisCompo | 
| as.logratioVariogram | Recast empirical variogram to format logratioVariogram | 
| as.logratioVariogram.gmEVario | Recast empirical variogram to format logratioVariogram | 
| as.logratioVariogram.gstatVariogram | Recast empirical variogram to format logratioVariogram | 
| as.logratioVariogram.logratioVariogram | Recast empirical variogram to format logratioVariogram | 
| as.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" | 
| as.logratioVariogramAnisotropy.default | Convert empirical variogram to "logratioVariogramAnisotropy" | 
| as.logratioVariogramAnisotropy.logratioVariogram | Convert empirical variogram to "logratioVariogramAnisotropy" | 
| as.logratioVariogramAnisotropy.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" | 
| as.variogramModel | Convert an LMC variogram model to gstat format | 
| as.variogramModel.CompLinModCoReg | Convert an LMC variogram model to gstat format | 
| as.variogramModel.default | Convert an LMC variogram model to gstat format | 
| as.variogramModel.gmCgram | Convert an LMC variogram model to gstat format | 
| as.variogramModel.LMCAnisCompo | Convert an LMC variogram model to gstat format | 
| CholeskyDecomposition | Create a parameter set specifying a LU decomposition simulation algorithm | 
| coloredBiplot.genDiag | Colored biplot for gemeralised diagonalisations Colored biplot method for objects of class genDiag | 
| constructMask | Constructs a mask for a grid | 
| DataFrameStack | Create a data frame stack | 
| DataFrameStack.array | Create a data frame stack | 
| DataFrameStack.data.frame | Create a data frame stack | 
| DataFrameStack.list | Create a data frame stack | 
| dimnames-method | Return the dimnames of a DataFrameStack | 
| dimnames.DataFrameStack | Return the dimnames of a DataFrameStack | 
| DirectSamplingParameters | Create a parameter set specifying a direct sampling algorithm | 
| DSpars | Create a parameter set specifying a direct sampling algorithm | 
| EmpiricalStructuralFunctionSpecification-class | Empirical structural function specification | 
| fit_lmc | Fit an LMC to an empirical variogram | 
| fit_lmc.default | Fit an LMC to an empirical variogram | 
| fit_lmc.gstatVariogram | Fit an LMC to an empirical variogram | 
| fit_lmc.logratioVariogram | Fit an LMC to an empirical variogram | 
| fit_lmc.logratioVariogramAnisotropy | Fit an LMC to an empirical variogram | 
| genDiag | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| getGridOrder | Set or get the ordering of a grid | 
| getMask | Get the mask info out of a spatial data object | 
| getMask.default | Get the mask info out of a spatial data object | 
| getMask.SpatialPixels | Get the mask info out of a spatial data object | 
| getMask.SpatialPixelsDataFrame | Get the mask info out of a spatial data object | 
| getMask.SpatialPointsDataFrame | Get the mask info out of a spatial data object | 
| getStackElement | Set or get the i-th data frame of a data.frame stack | 
| getStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack | 
| getStackElement.default | Set or get the i-th data frame of a data.frame stack | 
| getStackElement.list | Set or get the i-th data frame of a data.frame stack | 
| getTellus | Download the Tellus survey data set (NI) | 
| gmApply | Apply Functions Over Array or DataFrameStack Margins | 
| gmApply.DataFrameStack | Apply Functions Over Array or DataFrameStack Margins | 
| gmApply.default | Apply Functions Over Array or DataFrameStack Margins | 
| gmGaussianMethodParameters-class | parameters for Spatial Gaussian methods of any kind | 
| gmGaussianSimulationAlgorithm-class | parameters for Gaussian Simulation methods | 
| gmMPSParameters-class | parameters for Multiple-Point Statistics methods | 
| gmNeighbourhoodSpecification-class | Neighbourhood description | 
| gmSimulationAlgorithm-class | Parameter specification for a spatial simulation algorithm | 
| gmSpatialDataContainer-class | General description of a spatial data container | 
| gmSpatialMethodParameters-class | Parameter specification for any spatial method | 
| gmSpatialModel-class | Conditional spatial model data container | 
| gmTrainingImage-class | MPS training image class | 
| gmUnconditionalSpatialModel-class | General description of a spatial model | 
| gmValidationStrategy-class | Validation strategy description | 
| gridOrder_array | Set or get the ordering of a grid | 
| gridOrder_GSLib | Set or get the ordering of a grid | 
| gridOrder_gstat | Set or get the ordering of a grid | 
| gridOrder_sp | Set or get the ordering of a grid | 
| GridOrNothing-class | Superclass for grid or nothing | 
| gsi.calcCgram | Compute covariance matrix oout of locations | 
| gsi.Cokriging | Cokriging of all sorts, internal function | 
| gsi.CondTurningBands | Internal function, conditional turning bands realisations | 
| gsi.DS | Workhorse function for direct sampling | 
| gsi.EVario2D | Empirical variogram or covariance function in 2D | 
| gsi.EVario3D | Empirical variogram or covariance function in 3D | 
| gsi.getV | extract information about the original data, if available | 
| gsi.gstatCokriging2compo | Reorganisation of cokriged compositions | 
| gsi.gstatCokriging2compo.data.frame | Reorganisation of cokriged compositions | 
| gsi.gstatCokriging2compo.default | Reorganisation of cokriged compositions | 
| gsi.gstatCokriging2rmult | Reorganisation of cokriged compositions | 
| gsi.gstatCokriging2rmult.data.frame | Reorganisation of cokriged compositions | 
| gsi.gstatCokriging2rmult.default | Reorganisation of cokriged compositions | 
| gsi.orig | extract information about the original data, if available | 
| gsi.produceV | Create a matrix of logcontrasts and name prefix | 
| gsi.TurningBands | Internal function, unconditional turning bands realisations | 
| gsi.validModels | Generate D-variate variogram models | 
| gstat2LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo | 
| has.missings.data.frame | Check presence of missings check presence of missings in a data.frame | 
| image.logratioVariogramAnisotropy | Plot variogram maps for anisotropic logratio variograms | 
| image.mask | Image method for mask objects | 
| image_cokriged | Plot an image of gridded data | 
| image_cokriged.default | Plot an image of gridded data | 
| image_cokriged.spatialGridAcomp | Plot an image of gridded data | 
| image_cokriged.spatialGridRmult | Plot an image of gridded data | 
| is.anisotropySpecification | Check for any anisotropy class | 
| is.isotropic | Check for anisotropy of a theoretical variogram | 
| KrigingNeighbourhood | Create a parameter set of local for neighbourhood specification. | 
| LeaveOneOut | Specify the leave-one-out strategy for validation of a spatial model | 
| length.gmCgram | Length, and number of columns or rows | 
| LMCAnisCompo | Create a anisotropic model for regionalized compositions | 
| logratioVariogram | Empirical logratio variogram calculation | 
| logratioVariogram-method | Conditional spatial model data container | 
| logratioVariogram-method | Logratio variogram of a compositional data | 
| logratioVariogram_gmSpatialModel | Variogram method for gmSpatialModel objects | 
| Maf | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.aplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.ccomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.data.frame | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.rmult | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| Maf.rplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| make.gmCompositionalGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized compositions | 
| make.gmCompositionalMPSSpatialModel | Construct a Multi-Point gmSpatialModel for regionalized compositions | 
| make.gmMultivariateGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized multivariate data | 
| mean.accuracy | Mean accuracy | 
| mean.spatialDecorrelationMeasure | Average measures of spatial decorrelation | 
| ModelStructuralFunctionSpecification-class | Structural function model specification | 
| ncol.gmCgram | Length, and number of columns or rows | 
| ndirections | Number of directions of an empirical variogram | 
| ndirections.azimuth | Number of directions of an empirical variogram | 
| ndirections.azimuthInterval | Number of directions of an empirical variogram | 
| ndirections.default | Number of directions of an empirical variogram | 
| ndirections.gmEVario | Number of directions of an empirical variogram | 
| ndirections.gstatVariogram | Number of directions of an empirical variogram | 
| ndirections.logratioVariogram | Number of directions of an empirical variogram | 
| ndirections.logratioVariogramAnisotropy | Number of directions of an empirical variogram | 
| NfoldCrossValidation | Specify a strategy for validation of a spatial model | 
| NGSAustralia | National Geochemical Survey of Australia: soil data | 
| noSpatCorr.test | Test for lack of spatial correlation | 
| noSpatCorr.test.data.frame | Test for lack of spatial correlation | 
| noSpatCorr.test.default | Test for lack of spatial correlation | 
| noSpatCorr.test.matrix | Test for lack of spatial correlation | 
| noStackDim | Get/set name/index of (non)stacking dimensions | 
| noStackDim.default | Get/set name/index of (non)stacking dimensions | 
| nrow.gmCgram | Length, and number of columns or rows | 
| pairsmap | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined | 
| pairsmap.default | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined | 
| pairsmap.SpatialPointsDataFrame | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined | 
| plot.accuracy | Plot method for accuracy curves | 
| plot.gmCgram | Draw cuves for covariance/variogram models | 
| plot.gmEVario | Plot empirical variograms | 
| plot.logratioVariogramAnisotropy | Plot variogram lines of empirical directional logratio variograms | 
| plot.swarmPlot | Plotting method for swarmPlot objects | 
| precision | Precision calculations | 
| precision.accuracy | Precision calculations | 
| Predict | Predict method for objects of class 'gmSpatialModel' | 
| predict | Predict method for objects of class 'gmSpatialModel' | 
| Predict-method | Predict method for objects of class 'gmSpatialModel' | 
| predict-method | Predict method for objects of class 'gmSpatialModel' | 
| predict.genDiag | Predict method for generalised diagonalisation objects | 
| predict.gmCgram | Convert a gmCgram object to an (evaluable) function | 
| predict.gmSpatialModel | Predict method for objects of class 'gmSpatialModel' | 
| predict.LMCAnisCompo | Compute model variogram values Evaluate the variogram model provided at some lag vectors | 
| predict_gmSpatialModel | Predict method for objects of class 'gmSpatialModel' | 
| print.mask | Print method for mask objects | 
| pwlrmap | Compositional maps, pairwise logratios Matrix of maps showing different combinations of components of a composition, in pairwise logratios | 
| RJD | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| RJD.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| RJD.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| RJD.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| SequentialSimulation | Create a parameter set specifying a gaussian sequential simulation algorithm | 
| setCgram | Generate D-variate variogram models | 
| setGridOrder | Set or get the ordering of a grid | 
| setGridOrder_array | Set or get the ordering of a grid | 
| setGridOrder_sp | Set or get the ordering of a grid | 
| setMask | Set a mask on an object | 
| setMask.data.frame | Set a mask on an object | 
| setMask.DataFrameStack | Set a mask on an object | 
| setMask.default | Set a mask on an object | 
| setMask.GridTopology | Set a mask on an object | 
| setMask.SpatialGrid | Set a mask on an object | 
| setMask.SpatialPoints | Set a mask on an object | 
| setStackElement | Set or get the i-th data frame of a data.frame stack | 
| setStackElement.data.frame | Set or get the i-th data frame of a data.frame stack | 
| setStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack | 
| setStackElement.default | Set or get the i-th data frame of a data.frame stack | 
| setStackElement.list | Set or get the i-th data frame of a data.frame stack | 
| sortDataInGrid | Reorder data in a grid | 
| spatialDecorrelation | Compute diagonalisation measures | 
| spatialDecorrelation.gmEVario | Compute diagonalisation measures | 
| spatialDecorrelation.gstatVariogram | Compute diagonalisation measures | 
| spatialDecorrelation.logratioVariogram | Compute diagonalisation measures | 
| spatialGridAcomp | Construct a regionalized composition / reorder compositional simulations | 
| spatialGridRmult | Construct a regionalized multivariate data | 
| spectralcolors | Spectral colors palette based on the RColorBrewer::brewer.pal(11,"Spectral") | 
| sphTrans | Spherifying transform Compute a transformation that spherifies a certain data set | 
| sphTrans.default | Spherifying transform Compute a transformation that spherifies a certain data set | 
| stackDim | Get/set name/index of (non)stacking dimensions | 
| stackDim-method | Get name/index of the stacking dimension of a Spatial object | 
| stackDim.DataFrameStack | Get/set name/index of (non)stacking dimensions | 
| stackDim<- | Get/set name/index of (non)stacking dimensions | 
| stackDim<-.default | Get/set name/index of (non)stacking dimensions | 
| swarmPlot | Plot a swarm of calculated output through a DataFrameStack | 
| swath | Swath plots | 
| swath.acomp | Swath plots | 
| swath.ccomp | Swath plots | 
| swath.default | Swath plots | 
| swath.rcomp | Swath plots | 
| TurningBands | Create a parameter set specifying a turning bands simulation algorithm | 
| unmask | Unmask a masked object | 
| unmask.data.frame | Unmask a masked object | 
| unmask.DataFrameStack | Unmask a masked object | 
| unmask.SpatialPixels | Unmask a masked object | 
| unmask.SpatialPoints | Unmask a masked object | 
| UWEDGE | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| UWEDGE.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| UWEDGE.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| UWEDGE.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram | 
| validate | Validate a spatial model | 
| validate.LeaveOneOut | Validate a spatial model | 
| validate.NfoldCrossValidation | Validate a spatial model | 
| variogram-method | Conditional spatial model data container | 
| variogramModelPlot | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models | 
| variogramModelPlot.gmEVario | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models | 
| variogramModelPlot.gstatVariogram | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models | 
| variogramModelPlot.logratioVariogram | Quick plotting of empirical and theoretical logratio variograms Quick and dirty plotting of empirical logratio variograms with or without their models | 
| variogram_gmSpatialModel | Variogram method for gmSpatialModel objects | 
| vg.Exp | Generate D-variate variogram models | 
| vg.exp | Generate D-variate variogram models | 
| vg.Exponential | Generate D-variate variogram models | 
| vg.Gau | Generate D-variate variogram models | 
| vg.Gauss | Generate D-variate variogram models | 
| vg.gauss | Generate D-variate variogram models | 
| vg.Sph | Generate D-variate variogram models | 
| vg.sph | Generate D-variate variogram models | 
| vg.Spherical | Generate D-variate variogram models | 
| Windarling | Ore composition of a bench at a mine in Windarling, West Australia. | 
| write.GSLib | Write a regionalized data set in GSLIB format | 
| xvErrorMeasures | Cross-validation errror measures | 
| xvErrorMeasures.data.frame | Cross-validation errror measures | 
| xvErrorMeasures.DataFrameStack | Cross-validation errror measures | 
| xvErrorMeasures.default | Cross-validation errror measures | 
| +.gmCgram | Combination of gmCgram variogram structures | 
| [.DataFrameStack | Extract rows of a DataFrameStack | 
| [.gmCgram | Subsetting of gmCgram variogram structures | 
| [.logratioVariogramAnisotropy | Subsetting of logratioVariogram objects | 
| [[.gmCgram | Subsetting of gmCgram variogram structures | 
| `[.logratioVariogram` | Subsetting of logratioVariogram objects |