A C D E F G H I K L M N P R S T U V W X misc
accuracy | Compute accuracy and precision |
accuracy.data.frame | Compute accuracy and precision |
accuracy.DataFrameStack | Compute accuracy and precision |
ana | Flow anamorphosis transform Compute a transformation that gaussianizes a certain data set |
anaBackward | Backward gaussian anamorphosis backward transformation to multivariate gaussian scores |
anaForward | Forward gaussian anamorphosis forward transformation to multivariate gaussian scores |
anis2D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
anis3D_par2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
AnisotropyScaling | Convert to anisotropy scaling matrix |
anis_GSLIBpar2A | Produce anisotropy scaling matrix from angle and anisotropy ratios |
as.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
as.AnisotropyRangeMatrix.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
as.AnisotropyRangeMatrix.AnisotropyScaling | Force a matrix to be anisotropy range matrix, |
as.AnisotropyRangeMatrix.default | Force a matrix to be anisotropy range matrix, |
as.AnisotropyScaling | Convert to anisotropy scaling matrix |
as.AnisotropyScaling.AnisotropyRangeMatrix | Convert to anisotropy scaling matrix |
as.AnisotropyScaling.AnisotropyScaling | Convert to anisotropy scaling matrix |
as.AnisotropyScaling.numeric | Convert to anisotropy scaling matrix |
as.array.DataFrameStack | Convert a stacked data frame into an array |
as.CompLinModCoReg | Recast a model to the variogram model of package "compositions" |
as.CompLinModCoReg.CompLinModCoReg | Recast a model to the variogram model of package "compositions" |
as.CompLinModCoReg.LMCAnisCompo | Recast a model to the variogram model of package "compositions" |
as.DataFrameStack | Create a data frame stack |
as.DataFrameStack.array | Create a data frame stack |
as.DataFrameStack.data.frame | Create a data frame stack |
as.DataFrameStack.list | Create a data frame stack |
as.directorVector | Express a direction as a director vector |
as.directorVector.azimuth | Express a direction as a director vector |
as.directorVector.azimuthInterval | Express a direction as a director vector |
as.directorVector.default | Express a direction as a director vector |
as.function.gmCgram | Convert a gmCgram object to an (evaluable) function |
as.gmCgram | Convert theoretical structural functions to gmCgram format |
as.gmCgram.default | Convert theoretical structural functions to gmCgram format |
as.gmCgram.LMCAnisCompo | Convert theoretical structural functions to gmCgram format |
as.gmCgram.variogramModel | Convert theoretical structural functions to gmCgram format |
as.gmCgram.variogramModelList | Convert theoretical structural functions to gmCgram format |
as.gmEVario | Convert empirical structural function to gmEVario format |
as.gmEVario.default | Convert empirical structural function to gmEVario format |
as.gmEVario.gstatVariogram | Convert empirical structural function to gmEVario format |
as.gmEVario.logratioVariogram | Convert empirical structural function to gmEVario format |
as.gmEVario.logratioVariogramAnisotropy | Convert empirical structural function to gmEVario format |
as.gmSpatialModel | Recast spatial object to gmSpatialModel format |
as.gmSpatialModel.default | Recast spatial object to gmSpatialModel format |
as.gmSpatialModel.gstat | Recast spatial object to gmSpatialModel format |
as.gstat | Convert a regionalized data container to gstat |
as.gstat-method | Conditional spatial model data container |
as.gstat.default | Convert a regionalized data container to gstat |
as.gstatVariogram | Represent an empirical variogram in "gstatVariogram" format |
as.gstatVariogram.default | Represent an empirical variogram in "gstatVariogram" format |
as.gstatVariogram.gmEVario | Represent an empirical variogram in "gstatVariogram" format |
as.gstatVariogram.logratioVariogram | Represent an empirical variogram in "gstatVariogram" format |
as.gstatVariogram.logratioVariogramAnisotropy | Represent an empirical variogram in "gstatVariogram" format |
as.list.DataFrameStack | Convert a stacked data frame into a list of data.frames |
as.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
as.LMCAnisCompo.CompLinModCoReg | Recast compositional variogram model to format LMCAnisCompo |
as.LMCAnisCompo.gmCgram | Recast compositional variogram model to format LMCAnisCompo |
as.LMCAnisCompo.gstat | Recast compositional variogram model to format LMCAnisCompo |
as.LMCAnisCompo.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
as.LMCAnisCompo.variogramModelList | Recast compositional variogram model to format LMCAnisCompo |
as.logratioVariogram | Recast empirical variogram to format logratioVariogram |
as.logratioVariogram.gmEVario | Recast empirical variogram to format logratioVariogram |
as.logratioVariogram.gstatVariogram | Recast empirical variogram to format logratioVariogram |
as.logratioVariogram.logratioVariogram | Recast empirical variogram to format logratioVariogram |
as.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" |
as.logratioVariogramAnisotropy.default | Convert empirical variogram to "logratioVariogramAnisotropy" |
as.logratioVariogramAnisotropy.logratioVariogram | Convert empirical variogram to "logratioVariogramAnisotropy" |
as.logratioVariogramAnisotropy.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" |
as.variogramModel | Convert an LMC variogram model to gstat format |
as.variogramModel.CompLinModCoReg | Convert an LMC variogram model to gstat format |
as.variogramModel.default | Convert an LMC variogram model to gstat format |
as.variogramModel.gmCgram | Convert an LMC variogram model to gstat format |
as.variogramModel.LMCAnisCompo | Convert an LMC variogram model to gstat format |
CholeskyDecomposition | Create a parameter set specifying a LU decomposition simulation algorithm |
coloredBiplot.genDiag | Colored biplot for gemeralised diagonalisations Colored biplot method for objects of class genDiag |
constructMask | Constructs a mask for a grid |
DataFrameStack | Create a data frame stack |
DataFrameStack.array | Create a data frame stack |
DataFrameStack.data.frame | Create a data frame stack |
DataFrameStack.list | Create a data frame stack |
dimnames-method | Return the dimnames of a DataFrameStack |
dimnames.DataFrameStack | Return the dimnames of a DataFrameStack |
DirectSamplingParameters | Create a parameter set specifying a direct sampling algorithm |
DSpars | Create a parameter set specifying a direct sampling algorithm |
EmpiricalStructuralFunctionSpecification-class | Empirical structural function specification |
fit_lmc | Fit an LMC to an empirical variogram |
fit_lmc.default | Fit an LMC to an empirical variogram |
fit_lmc.gstatVariogram | Fit an LMC to an empirical variogram |
fit_lmc.logratioVariogram | Fit an LMC to an empirical variogram |
fit_lmc.logratioVariogramAnisotropy | Fit an LMC to an empirical variogram |
genDiag | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
getGridOrder | Set or get the ordering of a grid |
getMask | Get the mask info out of a spatial data object |
getMask.default | Get the mask info out of a spatial data object |
getMask.SpatialPixels | Get the mask info out of a spatial data object |
getMask.SpatialPixelsDataFrame | Get the mask info out of a spatial data object |
getMask.SpatialPointsDataFrame | Get the mask info out of a spatial data object |
getStackElement | Set or get the i-th data frame of a data.frame stack |
getStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack |
getStackElement.default | Set or get the i-th data frame of a data.frame stack |
getStackElement.list | Set or get the i-th data frame of a data.frame stack |
getTellus | Download the Tellus survey data set (NI) |
gmApply | Apply Functions Over Array or DataFrameStack Margins |
gmApply.DataFrameStack | Apply Functions Over Array or DataFrameStack Margins |
gmApply.default | Apply Functions Over Array or DataFrameStack Margins |
gmGaussianMethodParameters-class | parameters for Spatial Gaussian methods of any kind |
gmGaussianSimulationAlgorithm-class | parameters for Gaussian Simulation methods |
gmMPSParameters-class | parameters for Multiple-Point Statistics methods |
gmNeighbourhoodSpecification-class | Neighbourhood description |
gmSimulationAlgorithm-class | Parameter specification for a spatial simulation algorithm |
gmSpatialDataContainer-class | General description of a spatial data container |
gmSpatialMethodParameters-class | Parameter specification for any spatial method |
gmSpatialModel-class | Conditional spatial model data container |
gmTrainingImage-class | MPS training image class |
gmUnconditionalSpatialModel-class | General description of a spatial model |
gmValidationStrategy-class | Validation strategy description |
gridOrder_array | Set or get the ordering of a grid |
gridOrder_GSLib | Set or get the ordering of a grid |
gridOrder_gstat | Set or get the ordering of a grid |
gridOrder_sp | Set or get the ordering of a grid |
GridOrNothing-class | Superclass for grid or nothing |
gsi.calcCgram | Compute covariance matrix oout of locations |
gsi.Cokriging | Cokriging of all sorts, internal function |
gsi.CondTurningBands | Internal function, conditional turning bands realisations |
gsi.DS | Workhorse function for direct sampling |
gsi.EVario2D | Empirical variogram or covariance function in 2D |
gsi.EVario3D | Empirical variogram or covariance function in 3D |
gsi.getV | extract information about the original data, if available |
gsi.gstatCokriging2compo | Reorganisation of cokriged compositions |
gsi.gstatCokriging2compo.data.frame | Reorganisation of cokriged compositions |
gsi.gstatCokriging2compo.default | Reorganisation of cokriged compositions |
gsi.gstatCokriging2rmult | Reorganisation of cokriged compositions |
gsi.gstatCokriging2rmult.data.frame | Reorganisation of cokriged compositions |
gsi.gstatCokriging2rmult.default | Reorganisation of cokriged compositions |
gsi.orig | extract information about the original data, if available |
gsi.produceV | Create a matrix of logcontrasts and name prefix |
gsi.TurningBands | Internal function, unconditional turning bands realisations |
gsi.validModels | Generate D-variate variogram models |
gstat2LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
has.missings.data.frame | Check presence of missings check presence of missings in a data.frame |
image.logratioVariogramAnisotropy | Plot variogram maps for anisotropic logratio variograms |
image.mask | Image method for mask objects |
image_cokriged | Plot an image of gridded data |
image_cokriged.default | Plot an image of gridded data |
image_cokriged.spatialGridAcomp | Plot an image of gridded data |
image_cokriged.spatialGridRmult | Plot an image of gridded data |
is.anisotropySpecification | Check for any anisotropy class |
is.isotropic | Check for anisotropy of a theoretical variogram |
KrigingNeighbourhood | Create a parameter set of local for neighbourhood specification. |
LeaveOneOut | Specify the leave-one-out strategy for validation of a spatial model |
length.gmCgram | Length, and number of columns or rows |
LMCAnisCompo | Create a anisotropic model for regionalized compositions |
logratioVariogram | Empirical logratio variogram calculation |
logratioVariogram-method | Conditional spatial model data container |
logratioVariogram-method | Logratio variogram of a compositional data |
logratioVariogram_gmSpatialModel | Variogram method for gmSpatialModel objects |
Maf | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.aplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.ccomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.data.frame | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.rmult | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
Maf.rplus | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
make.gmCompositionalGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized compositions |
make.gmCompositionalMPSSpatialModel | Construct a Multi-Point gmSpatialModel for regionalized compositions |
make.gmMultivariateGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized multivariate data |
mean.accuracy | Mean accuracy |
mean.spatialDecorrelationMeasure | Average measures of spatial decorrelation |
ModelStructuralFunctionSpecification-class | Structural function model specification |
ncol.gmCgram | Length, and number of columns or rows |
ndirections | Number of directions of an empirical variogram |
ndirections.azimuth | Number of directions of an empirical variogram |
ndirections.azimuthInterval | Number of directions of an empirical variogram |
ndirections.default | Number of directions of an empirical variogram |
ndirections.gmEVario | Number of directions of an empirical variogram |
ndirections.gstatVariogram | Number of directions of an empirical variogram |
ndirections.logratioVariogram | Number of directions of an empirical variogram |
ndirections.logratioVariogramAnisotropy | Number of directions of an empirical variogram |
NfoldCrossValidation | Specify a strategy for validation of a spatial model |
NGSAustralia | National Geochemical Survey of Australia: soil data |
noSpatCorr.test | Test for lack of spatial correlation |
noSpatCorr.test.data.frame | Test for lack of spatial correlation |
noSpatCorr.test.default | Test for lack of spatial correlation |
noSpatCorr.test.matrix | Test for lack of spatial correlation |
noStackDim | Get/set name/index of (non)stacking dimensions |
noStackDim.default | Get/set name/index of (non)stacking dimensions |
nrow.gmCgram | Length, and number of columns or rows |
pairsmap | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
pairsmap.default | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
pairsmap.SpatialPointsDataFrame | Multiple maps Matrix of maps showing different combinations of components of a composition, user defined |
plot.accuracy | Plot method for accuracy curves |
plot.gmCgram | Draw cuves for covariance/variogram models |
plot.gmEVario | Plot empirical variograms |
plot.logratioVariogramAnisotropy | Plot variogram lines of empirical directional logratio variograms |
plot.swarmPlot | Plotting method for swarmPlot objects |
precision | Precision calculations |
precision.accuracy | Precision calculations |
Predict | Predict method for objects of class 'gmSpatialModel' |
predict | Predict method for objects of class 'gmSpatialModel' |
Predict-method | Predict method for objects of class 'gmSpatialModel' |
predict-method | Predict method for objects of class 'gmSpatialModel' |
predict.genDiag | Predict method for generalised diagonalisation objects |
predict.gmCgram | Convert a gmCgram object to an (evaluable) function |
predict.gmSpatialModel | Predict method for objects of class 'gmSpatialModel' |
predict.LMCAnisCompo | Compute model variogram values Evaluate the variogram model provided at some lag vectors |
predict_gmSpatialModel | Predict method for objects of class 'gmSpatialModel' |
print.mask | Print method for mask objects |
pwlrmap | Compositional maps, pairwise logratios Matrix of maps showing different combinations of components of a composition, in pairwise logratios |
RJD | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
RJD.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
RJD.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
RJD.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
SequentialSimulation | Create a parameter set specifying a gaussian sequential simulation algorithm |
setCgram | Generate D-variate variogram models |
setGridOrder | Set or get the ordering of a grid |
setGridOrder_array | Set or get the ordering of a grid |
setGridOrder_sp | Set or get the ordering of a grid |
setMask | Set a mask on an object |
setMask.data.frame | Set a mask on an object |
setMask.DataFrameStack | Set a mask on an object |
setMask.default | Set a mask on an object |
setMask.GridTopology | Set a mask on an object |
setMask.SpatialGrid | Set a mask on an object |
setMask.SpatialPoints | Set a mask on an object |
setStackElement | Set or get the i-th data frame of a data.frame stack |
setStackElement.data.frame | Set or get the i-th data frame of a data.frame stack |
setStackElement.DataFrameStack | Set or get the i-th data frame of a data.frame stack |
setStackElement.default | Set or get the i-th data frame of a data.frame stack |
setStackElement.list | Set or get the i-th data frame of a data.frame stack |
sortDataInGrid | Reorder data in a grid |
spatialDecorrelation | Compute diagonalisation measures |
spatialDecorrelation.gmEVario | Compute diagonalisation measures |
spatialDecorrelation.gstatVariogram | Compute diagonalisation measures |
spatialDecorrelation.logratioVariogram | Compute diagonalisation measures |
spatialGridAcomp | Construct a regionalized composition / reorder compositional simulations |
spatialGridRmult | Construct a regionalized multivariate data |
spectralcolors | Spectral colors palette based on the RColorBrewer::brewer.pal(11,"Spectral") |
sphTrans | Spherifying transform Compute a transformation that spherifies a certain data set |
sphTrans.default | Spherifying transform Compute a transformation that spherifies a certain data set |
stackDim | Get/set name/index of (non)stacking dimensions |
stackDim-method | Get name/index of the stacking dimension of a Spatial object |
stackDim.DataFrameStack | Get/set name/index of (non)stacking dimensions |
stackDim<- | Get/set name/index of (non)stacking dimensions |
stackDim<-.default | Get/set name/index of (non)stacking dimensions |
swarmPlot | Plot a swarm of calculated output through a DataFrameStack |
swath | Swath plots |
swath.acomp | Swath plots |
swath.ccomp | Swath plots |
swath.default | Swath plots |
swath.rcomp | Swath plots |
TurningBands | Create a parameter set specifying a turning bands simulation algorithm |
unmask | Unmask a masked object |
unmask.data.frame | Unmask a masked object |
unmask.DataFrameStack | Unmask a masked object |
unmask.SpatialPixels | Unmask a masked object |
unmask.SpatialPoints | Unmask a masked object |
UWEDGE | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
UWEDGE.acomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
UWEDGE.default | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
UWEDGE.rcomp | Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram |
validate | Validate a spatial model |
validate.LeaveOneOut | Validate a spatial model |
validate.NfoldCrossValidation | Validate a spatial model |
variogram-method | Conditional spatial model data container |
variogramModelPlot | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
variogramModelPlot.gmEVario | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
variogramModelPlot.gstatVariogram | Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models |
variogramModelPlot.logratioVariogram | Quick plotting of empirical and theoretical logratio variograms Quick and dirty plotting of empirical logratio variograms with or without their models |
variogram_gmSpatialModel | Variogram method for gmSpatialModel objects |
vg.Exp | Generate D-variate variogram models |
vg.exp | Generate D-variate variogram models |
vg.Exponential | Generate D-variate variogram models |
vg.Gau | Generate D-variate variogram models |
vg.Gauss | Generate D-variate variogram models |
vg.gauss | Generate D-variate variogram models |
vg.Sph | Generate D-variate variogram models |
vg.sph | Generate D-variate variogram models |
vg.Spherical | Generate D-variate variogram models |
Windarling | Ore composition of a bench at a mine in Windarling, West Australia. |
write.GSLib | Write a regionalized data set in GSLIB format |
xvErrorMeasures | Cross-validation errror measures |
xvErrorMeasures.data.frame | Cross-validation errror measures |
xvErrorMeasures.DataFrameStack | Cross-validation errror measures |
xvErrorMeasures.default | Cross-validation errror measures |
+.gmCgram | Combination of gmCgram variogram structures |
[.DataFrameStack | Extract rows of a DataFrameStack |
[.gmCgram | Subsetting of gmCgram variogram structures |
[.logratioVariogramAnisotropy | Subsetting of logratioVariogram objects |
[[.gmCgram | Subsetting of gmCgram variogram structures |
`[.logratioVariogram` | Subsetting of logratioVariogram objects |