Geostatistics for Compositional Analysis


[Up] [Top]

Documentation for package ‘gmGeostats’ version 0.11.3

Help Pages

A C D E F G H I K L M N P R S T U V W X misc

-- A --

accuracy Compute accuracy and precision
accuracy.data.frame Compute accuracy and precision
accuracy.DataFrameStack Compute accuracy and precision
ana Flow anamorphosis transform Compute a transformation that gaussianizes a certain data set
anaBackward Backward gaussian anamorphosis backward transformation to multivariate gaussian scores
anaForward Forward gaussian anamorphosis forward transformation to multivariate gaussian scores
anis2D_par2A Produce anisotropy scaling matrix from angle and anisotropy ratios
anis3D_par2A Produce anisotropy scaling matrix from angle and anisotropy ratios
AnisotropyRangeMatrix Force a matrix to be anisotropy range matrix,
AnisotropyScaling Convert to anisotropy scaling matrix
anis_GSLIBpar2A Produce anisotropy scaling matrix from angle and anisotropy ratios
as.AnisotropyRangeMatrix Force a matrix to be anisotropy range matrix,
as.AnisotropyRangeMatrix.AnisotropyRangeMatrix Force a matrix to be anisotropy range matrix,
as.AnisotropyRangeMatrix.AnisotropyScaling Force a matrix to be anisotropy range matrix,
as.AnisotropyRangeMatrix.default Force a matrix to be anisotropy range matrix,
as.AnisotropyScaling Convert to anisotropy scaling matrix
as.AnisotropyScaling.AnisotropyRangeMatrix Convert to anisotropy scaling matrix
as.AnisotropyScaling.AnisotropyScaling Convert to anisotropy scaling matrix
as.AnisotropyScaling.numeric Convert to anisotropy scaling matrix
as.array.DataFrameStack Convert a stacked data frame into an array
as.CompLinModCoReg Recast a model to the variogram model of package "compositions"
as.CompLinModCoReg.CompLinModCoReg Recast a model to the variogram model of package "compositions"
as.CompLinModCoReg.LMCAnisCompo Recast a model to the variogram model of package "compositions"
as.DataFrameStack Create a data frame stack
as.DataFrameStack.array Create a data frame stack
as.DataFrameStack.data.frame Create a data frame stack
as.DataFrameStack.list Create a data frame stack
as.directorVector Express a direction as a director vector
as.directorVector.azimuth Express a direction as a director vector
as.directorVector.azimuthInterval Express a direction as a director vector
as.directorVector.default Express a direction as a director vector
as.function.gmCgram Convert a gmCgram object to an (evaluable) function
as.gmCgram Convert theoretical structural functions to gmCgram format
as.gmCgram.default Convert theoretical structural functions to gmCgram format
as.gmCgram.LMCAnisCompo Convert theoretical structural functions to gmCgram format
as.gmCgram.variogramModel Convert theoretical structural functions to gmCgram format
as.gmCgram.variogramModelList Convert theoretical structural functions to gmCgram format
as.gmEVario Convert empirical structural function to gmEVario format
as.gmEVario.default Convert empirical structural function to gmEVario format
as.gmEVario.gstatVariogram Convert empirical structural function to gmEVario format
as.gmEVario.logratioVariogram Convert empirical structural function to gmEVario format
as.gmEVario.logratioVariogramAnisotropy Convert empirical structural function to gmEVario format
as.gmSpatialModel Recast spatial object to gmSpatialModel format
as.gmSpatialModel.default Recast spatial object to gmSpatialModel format
as.gmSpatialModel.gstat Recast spatial object to gmSpatialModel format
as.gstat Convert a regionalized data container to gstat
as.gstat-method Conditional spatial model data container
as.gstat.default Convert a regionalized data container to gstat
as.gstatVariogram Represent an empirical variogram in "gstatVariogram" format
as.gstatVariogram.default Represent an empirical variogram in "gstatVariogram" format
as.gstatVariogram.gmEVario Represent an empirical variogram in "gstatVariogram" format
as.gstatVariogram.logratioVariogram Represent an empirical variogram in "gstatVariogram" format
as.gstatVariogram.logratioVariogramAnisotropy Represent an empirical variogram in "gstatVariogram" format
as.list.DataFrameStack Convert a stacked data frame into a list of data.frames
as.LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo
as.LMCAnisCompo.CompLinModCoReg Recast compositional variogram model to format LMCAnisCompo
as.LMCAnisCompo.gmCgram Recast compositional variogram model to format LMCAnisCompo
as.LMCAnisCompo.gstat Recast compositional variogram model to format LMCAnisCompo
as.LMCAnisCompo.LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo
as.LMCAnisCompo.variogramModelList Recast compositional variogram model to format LMCAnisCompo
as.logratioVariogram Recast empirical variogram to format logratioVariogram
as.logratioVariogram.gmEVario Recast empirical variogram to format logratioVariogram
as.logratioVariogram.gstatVariogram Recast empirical variogram to format logratioVariogram
as.logratioVariogram.logratioVariogram Recast empirical variogram to format logratioVariogram
as.logratioVariogramAnisotropy Convert empirical variogram to "logratioVariogramAnisotropy"
as.logratioVariogramAnisotropy.default Convert empirical variogram to "logratioVariogramAnisotropy"
as.logratioVariogramAnisotropy.logratioVariogram Convert empirical variogram to "logratioVariogramAnisotropy"
as.logratioVariogramAnisotropy.logratioVariogramAnisotropy Convert empirical variogram to "logratioVariogramAnisotropy"
as.variogramModel Convert an LMC variogram model to gstat format
as.variogramModel.CompLinModCoReg Convert an LMC variogram model to gstat format
as.variogramModel.default Convert an LMC variogram model to gstat format
as.variogramModel.gmCgram Convert an LMC variogram model to gstat format
as.variogramModel.LMCAnisCompo Convert an LMC variogram model to gstat format

-- C --

CholeskyDecomposition Create a parameter set specifying a LU decomposition simulation algorithm
coloredBiplot.genDiag Colored biplot for gemeralised diagonalisations Colored biplot method for objects of class genDiag
constructMask Constructs a mask for a grid

-- D --

DataFrameStack Create a data frame stack
DataFrameStack.array Create a data frame stack
DataFrameStack.data.frame Create a data frame stack
DataFrameStack.list Create a data frame stack
dimnames-method Return the dimnames of a DataFrameStack
dimnames.DataFrameStack Return the dimnames of a DataFrameStack
DirectSamplingParameters Create a parameter set specifying a direct sampling algorithm
DSpars Create a parameter set specifying a direct sampling algorithm

-- E --

EmpiricalStructuralFunctionSpecification-class Empirical structural function specification

-- F --

fit_lmc Fit an LMC to an empirical variogram
fit_lmc.default Fit an LMC to an empirical variogram
fit_lmc.gstatVariogram Fit an LMC to an empirical variogram
fit_lmc.logratioVariogram Fit an LMC to an empirical variogram
fit_lmc.logratioVariogramAnisotropy Fit an LMC to an empirical variogram

-- G --

genDiag Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
getGridOrder Set or get the ordering of a grid
getMask Get the mask info out of a spatial data object
getMask.default Get the mask info out of a spatial data object
getMask.SpatialPixels Get the mask info out of a spatial data object
getMask.SpatialPixelsDataFrame Get the mask info out of a spatial data object
getMask.SpatialPointsDataFrame Get the mask info out of a spatial data object
getStackElement Set or get the i-th data frame of a data.frame stack
getStackElement.DataFrameStack Set or get the i-th data frame of a data.frame stack
getStackElement.default Set or get the i-th data frame of a data.frame stack
getStackElement.list Set or get the i-th data frame of a data.frame stack
getTellus Download the Tellus survey data set (NI)
gmApply Apply Functions Over Array or DataFrameStack Margins
gmApply.DataFrameStack Apply Functions Over Array or DataFrameStack Margins
gmApply.default Apply Functions Over Array or DataFrameStack Margins
gmGaussianMethodParameters-class parameters for Spatial Gaussian methods of any kind
gmGaussianSimulationAlgorithm-class parameters for Gaussian Simulation methods
gmMPSParameters-class parameters for Multiple-Point Statistics methods
gmNeighbourhoodSpecification-class Neighbourhood description
gmSimulationAlgorithm-class Parameter specification for a spatial simulation algorithm
gmSpatialDataContainer-class General description of a spatial data container
gmSpatialMethodParameters-class Parameter specification for any spatial method
gmSpatialModel-class Conditional spatial model data container
gmTrainingImage-class MPS training image class
gmUnconditionalSpatialModel-class General description of a spatial model
gmValidationStrategy-class Validation strategy description
gridOrder_array Set or get the ordering of a grid
gridOrder_GSLib Set or get the ordering of a grid
gridOrder_gstat Set or get the ordering of a grid
gridOrder_sp Set or get the ordering of a grid
GridOrNothing-class Superclass for grid or nothing
gsi.calcCgram Compute covariance matrix oout of locations
gsi.Cokriging Cokriging of all sorts, internal function
gsi.CondTurningBands Internal function, conditional turning bands realisations
gsi.DS Workhorse function for direct sampling
gsi.EVario2D Empirical variogram or covariance function in 2D
gsi.EVario3D Empirical variogram or covariance function in 3D
gsi.getV extract information about the original data, if available
gsi.gstatCokriging2compo Reorganisation of cokriged compositions
gsi.gstatCokriging2compo.data.frame Reorganisation of cokriged compositions
gsi.gstatCokriging2compo.default Reorganisation of cokriged compositions
gsi.gstatCokriging2rmult Reorganisation of cokriged compositions
gsi.gstatCokriging2rmult.data.frame Reorganisation of cokriged compositions
gsi.gstatCokriging2rmult.default Reorganisation of cokriged compositions
gsi.orig extract information about the original data, if available
gsi.produceV Create a matrix of logcontrasts and name prefix
gsi.TurningBands Internal function, unconditional turning bands realisations
gsi.validModels Generate D-variate variogram models
gstat2LMCAnisCompo Recast compositional variogram model to format LMCAnisCompo

-- H --

has.missings.data.frame Check presence of missings check presence of missings in a data.frame

-- I --

image.logratioVariogramAnisotropy Plot variogram maps for anisotropic logratio variograms
image.mask Image method for mask objects
image_cokriged Plot an image of gridded data
image_cokriged.default Plot an image of gridded data
image_cokriged.spatialGridAcomp Plot an image of gridded data
image_cokriged.spatialGridRmult Plot an image of gridded data
is.anisotropySpecification Check for any anisotropy class
is.isotropic Check for anisotropy of a theoretical variogram

-- K --

KrigingNeighbourhood Create a parameter set of local for neighbourhood specification.

-- L --

LeaveOneOut Specify the leave-one-out strategy for validation of a spatial model
length.gmCgram Length, and number of columns or rows
LMCAnisCompo Create a anisotropic model for regionalized compositions
logratioVariogram Empirical logratio variogram calculation
logratioVariogram-method Conditional spatial model data container
logratioVariogram-method Logratio variogram of a compositional data
logratioVariogram_gmSpatialModel Variogram method for gmSpatialModel objects

-- M --

Maf Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.acomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.aplus Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.ccomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.data.frame Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.rcomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.rmult Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
Maf.rplus Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
make.gmCompositionalGaussianSpatialModel Construct a Gaussian gmSpatialModel for regionalized compositions
make.gmCompositionalMPSSpatialModel Construct a Multi-Point gmSpatialModel for regionalized compositions
make.gmMultivariateGaussianSpatialModel Construct a Gaussian gmSpatialModel for regionalized multivariate data
mean.accuracy Mean accuracy
mean.spatialDecorrelationMeasure Average measures of spatial decorrelation
ModelStructuralFunctionSpecification-class Structural function model specification

-- N --

ncol.gmCgram Length, and number of columns or rows
ndirections Number of directions of an empirical variogram
ndirections.azimuth Number of directions of an empirical variogram
ndirections.azimuthInterval Number of directions of an empirical variogram
ndirections.default Number of directions of an empirical variogram
ndirections.gmEVario Number of directions of an empirical variogram
ndirections.gstatVariogram Number of directions of an empirical variogram
ndirections.logratioVariogram Number of directions of an empirical variogram
ndirections.logratioVariogramAnisotropy Number of directions of an empirical variogram
NfoldCrossValidation Specify a strategy for validation of a spatial model
NGSAustralia National Geochemical Survey of Australia: soil data
noSpatCorr.test Test for lack of spatial correlation
noSpatCorr.test.data.frame Test for lack of spatial correlation
noSpatCorr.test.default Test for lack of spatial correlation
noSpatCorr.test.matrix Test for lack of spatial correlation
noStackDim Get/set name/index of (non)stacking dimensions
noStackDim.default Get/set name/index of (non)stacking dimensions
nrow.gmCgram Length, and number of columns or rows

-- P --

pairsmap Multiple maps Matrix of maps showing different combinations of components of a composition, user defined
pairsmap.default Multiple maps Matrix of maps showing different combinations of components of a composition, user defined
pairsmap.SpatialPointsDataFrame Multiple maps Matrix of maps showing different combinations of components of a composition, user defined
plot.accuracy Plot method for accuracy curves
plot.gmCgram Draw cuves for covariance/variogram models
plot.gmEVario Plot empirical variograms
plot.logratioVariogramAnisotropy Plot variogram lines of empirical directional logratio variograms
plot.swarmPlot Plotting method for swarmPlot objects
precision Precision calculations
precision.accuracy Precision calculations
Predict Predict method for objects of class 'gmSpatialModel'
predict Predict method for objects of class 'gmSpatialModel'
Predict-method Predict method for objects of class 'gmSpatialModel'
predict-method Predict method for objects of class 'gmSpatialModel'
predict.genDiag Predict method for generalised diagonalisation objects
predict.gmCgram Convert a gmCgram object to an (evaluable) function
predict.gmSpatialModel Predict method for objects of class 'gmSpatialModel'
predict.LMCAnisCompo Compute model variogram values Evaluate the variogram model provided at some lag vectors
predict_gmSpatialModel Predict method for objects of class 'gmSpatialModel'
print.mask Print method for mask objects
pwlrmap Compositional maps, pairwise logratios Matrix of maps showing different combinations of components of a composition, in pairwise logratios

-- R --

RJD Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
RJD.acomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
RJD.default Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
RJD.rcomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram

-- S --

SequentialSimulation Create a parameter set specifying a gaussian sequential simulation algorithm
setCgram Generate D-variate variogram models
setGridOrder Set or get the ordering of a grid
setGridOrder_array Set or get the ordering of a grid
setGridOrder_sp Set or get the ordering of a grid
setMask Set a mask on an object
setMask.data.frame Set a mask on an object
setMask.DataFrameStack Set a mask on an object
setMask.default Set a mask on an object
setMask.GridTopology Set a mask on an object
setMask.SpatialGrid Set a mask on an object
setMask.SpatialPoints Set a mask on an object
setStackElement Set or get the i-th data frame of a data.frame stack
setStackElement.data.frame Set or get the i-th data frame of a data.frame stack
setStackElement.DataFrameStack Set or get the i-th data frame of a data.frame stack
setStackElement.default Set or get the i-th data frame of a data.frame stack
setStackElement.list Set or get the i-th data frame of a data.frame stack
sortDataInGrid Reorder data in a grid
spatialDecorrelation Compute diagonalisation measures
spatialDecorrelation.gmEVario Compute diagonalisation measures
spatialDecorrelation.gstatVariogram Compute diagonalisation measures
spatialDecorrelation.logratioVariogram Compute diagonalisation measures
spatialGridAcomp Construct a regionalized composition / reorder compositional simulations
spatialGridRmult Construct a regionalized multivariate data
spectralcolors Spectral colors palette based on the RColorBrewer::brewer.pal(11,"Spectral")
sphTrans Spherifying transform Compute a transformation that spherifies a certain data set
sphTrans.default Spherifying transform Compute a transformation that spherifies a certain data set
stackDim Get/set name/index of (non)stacking dimensions
stackDim-method Get name/index of the stacking dimension of a Spatial object
stackDim.DataFrameStack Get/set name/index of (non)stacking dimensions
stackDim<- Get/set name/index of (non)stacking dimensions
stackDim<-.default Get/set name/index of (non)stacking dimensions
swarmPlot Plot a swarm of calculated output through a DataFrameStack
swath Swath plots
swath.acomp Swath plots
swath.ccomp Swath plots
swath.default Swath plots
swath.rcomp Swath plots

-- T --

TurningBands Create a parameter set specifying a turning bands simulation algorithm

-- U --

unmask Unmask a masked object
unmask.data.frame Unmask a masked object
unmask.DataFrameStack Unmask a masked object
unmask.SpatialPixels Unmask a masked object
unmask.SpatialPoints Unmask a masked object
UWEDGE Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
UWEDGE.acomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
UWEDGE.default Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram
UWEDGE.rcomp Generalised diagonalisations Calculate several generalized diagonalisations out of a data set and its empirical variogram

-- V --

validate Validate a spatial model
validate.LeaveOneOut Validate a spatial model
validate.NfoldCrossValidation Validate a spatial model
variogram-method Conditional spatial model data container
variogramModelPlot Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models
variogramModelPlot.gmEVario Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models
variogramModelPlot.gstatVariogram Quick plotting of empirical and theoretical variograms Quick and dirty plotting of empirical variograms/covariances with or without their models
variogramModelPlot.logratioVariogram Quick plotting of empirical and theoretical logratio variograms Quick and dirty plotting of empirical logratio variograms with or without their models
variogram_gmSpatialModel Variogram method for gmSpatialModel objects
vg.Exp Generate D-variate variogram models
vg.exp Generate D-variate variogram models
vg.Exponential Generate D-variate variogram models
vg.Gau Generate D-variate variogram models
vg.Gauss Generate D-variate variogram models
vg.gauss Generate D-variate variogram models
vg.Sph Generate D-variate variogram models
vg.sph Generate D-variate variogram models
vg.Spherical Generate D-variate variogram models

-- W --

Windarling Ore composition of a bench at a mine in Windarling, West Australia.
write.GSLib Write a regionalized data set in GSLIB format

-- X --

xvErrorMeasures Cross-validation errror measures
xvErrorMeasures.data.frame Cross-validation errror measures
xvErrorMeasures.DataFrameStack Cross-validation errror measures
xvErrorMeasures.default Cross-validation errror measures

-- misc --

+.gmCgram Combination of gmCgram variogram structures
[.DataFrameStack Extract rows of a DataFrameStack
[.gmCgram Subsetting of gmCgram variogram structures
[.logratioVariogramAnisotropy Subsetting of logratioVariogram objects
[[.gmCgram Subsetting of gmCgram variogram structures
`[.logratioVariogram` Subsetting of logratioVariogram objects