glmnet-package | Elastic net model paths for some generalized linear models |
assess.glmnet | assess performance of a 'glmnet' object using test data. |
beta_CVX | Simulated data for the glmnet vignette |
bigGlm | fit a glm with all the options in 'glmnet' |
BinomialExample | Synthetic dataset with binary response |
Cindex | compute C index for a Cox model |
coef.cv.glmnet | make predictions from a "cv.glmnet" object. |
coef.cv.relaxed | make predictions from a "cv.glmnet" object. |
coef.glmnet | Extract coefficients from a glmnet object |
coef.relaxed | Extract coefficients from a glmnet object |
confusion.glmnet | assess performance of a 'glmnet' object using test data. |
cox.fit | Fit a Cox regression model with elastic net regularization for a single value of lambda |
cox.path | Fit a Cox regression model with elastic net regularization for a path of lambda values |
CoxExample | Synthetic dataset with right-censored survival response |
coxgrad | Compute gradient for Cox model |
coxnet.deviance | Compute deviance for Cox model |
cox_obj_function | Elastic net objective function value for Cox regression model |
cv.glmnet | Cross-validation for glmnet |
deviance.glmnet | Extract the deviance from a glmnet object |
dev_function | Elastic net deviance value |
elnet.fit | Solve weighted least squares (WLS) problem for a single lambda value |
fid | Helper function for Cox deviance and gradient |
get_cox_lambda_max | Get lambda max for Cox regression model |
get_eta | Helper function to get etas (linear predictions) |
get_start | Get null deviance, starting mu and lambda max |
glmnet | fit a GLM with lasso or elasticnet regularization |
glmnet.control | internal glmnet parameters |
glmnet.fit | Fit a GLM with elastic net regularization for a single value of lambda |
glmnet.measures | Display the names of the measures used in CV for different "glmnet" families |
glmnet.path | Fit a GLM with elastic net regularization for a path of lambda values |
makeX | convert a data frame to a data matrix with one-hot encoding |
MultiGaussianExample | Synthetic dataset with multiple Gaussian responses |
MultinomialExample | Synthetic dataset with multinomial response |
mycoxph | Helper function to fit coxph model for survfit.coxnet |
mycoxpred | Helper function to amend ... for new data in survfit.coxnet |
na.replace | Replace the missing entries in a matrix columnwise with the entries in a supplied vector |
obj_function | Elastic net objective function value |
pen_function | Elastic net penalty value |
plot.cv.glmnet | plot the cross-validation curve produced by cv.glmnet |
plot.cv.relaxed | plot the cross-validation curve produced by cv.glmnet |
plot.glmnet | plot coefficients from a "glmnet" object |
plot.mrelnet | plot coefficients from a "glmnet" object |
plot.multnet | plot coefficients from a "glmnet" object |
plot.relaxed | plot coefficients from a "glmnet" object |
PoissonExample | Synthetic dataset with count response |
predict.coxnet | Extract coefficients from a glmnet object |
predict.cv.glmnet | make predictions from a "cv.glmnet" object. |
predict.cv.relaxed | make predictions from a "cv.glmnet" object. |
predict.elnet | Extract coefficients from a glmnet object |
predict.fishnet | Extract coefficients from a glmnet object |
predict.glmnet | Extract coefficients from a glmnet object |
predict.glmnetfit | Get predictions from a 'glmnetfit' fit object |
predict.lognet | Extract coefficients from a glmnet object |
predict.mrelnet | Extract coefficients from a glmnet object |
predict.multnet | Extract coefficients from a glmnet object |
predict.relaxed | Extract coefficients from a glmnet object |
print.bigGlm | print a glmnet object |
print.cv.glmnet | print a cross-validated glmnet object |
print.cv.relaxed | print a cross-validated glmnet object |
print.glmnet | print a glmnet object |
print.relaxed | print a glmnet object |
QuickStartExample | Synthetic dataset with Gaussian response |
relax.glmnet | fit a GLM with lasso or elasticnet regularization |
response.coxnet | Make response for coxnet |
rmult | Generate multinomial samples from a probability matrix |
roc.glmnet | assess performance of a 'glmnet' object using test data. |
SparseExample | Synthetic dataset with sparse design matrix |
stratifySurv | Add strata to a Surv object |
survfit.coxnet | Compute a survival curve from a coxnet object |
survfit.cv.glmnet | Compute a survival curve from a cv.glmnet object |
use.cox.path | Check if glmnet should call cox.path |
weighted_mean_sd | Helper function to compute weighted mean and standard deviation |
x | Simulated data for the glmnet vignette |
y | Simulated data for the glmnet vignette |