| coef.glmnet {glmnet} | R Documentation |
Extract coefficients from a glmnet object
Description
Similar to other predict methods, this functions predicts fitted values,
logits, coefficients and more from a fitted "glmnet" object.
Usage
## S3 method for class 'glmnet'
coef(object, s = NULL, exact = FALSE, ...)
## S3 method for class 'glmnet'
predict(
object,
newx,
s = NULL,
type = c("link", "response", "coefficients", "nonzero", "class"),
exact = FALSE,
newoffset,
...
)
## S3 method for class 'relaxed'
predict(
object,
newx,
s = NULL,
gamma = 1,
type = c("link", "response", "coefficients", "nonzero", "class"),
exact = FALSE,
newoffset,
...
)
Arguments
object |
Fitted |
s |
Value(s) of the penalty parameter |
exact |
This argument is relevant only when predictions are made at
values of |
... |
This is the mechanism for passing arguments like |
newx |
Matrix of new values for |
type |
Type of prediction required. Type |
newoffset |
If an offset is used in the fit, then one must be supplied
for making predictions (except for |
gamma |
Single value of |
Details
The shape of the objects returned are different for "multinomial"
objects. This function actually calls NextMethod(), and the
appropriate predict method is invoked for each of the three model types.
coef(...) is equivalent to predict(type="coefficients",...)
Value
The object returned depends on type.
Author(s)
Jerome Friedman, Trevor Hastie and Rob Tibshirani
Maintainer:
Trevor Hastie hastie@stanford.edu
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent (2010), Journal of Statistical Software, Vol. 33(1), 1-22,
doi:10.18637/jss.v033.i01.
Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2011)
Regularization Paths for Cox's Proportional
Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol.
39(5), 1-13,
doi:10.18637/jss.v039.i05.
Glmnet webpage with four vignettes, https://glmnet.stanford.edu.
See Also
glmnet, and print, and coef methods, and
cv.glmnet.
Examples
x=matrix(rnorm(100*20),100,20)
y=rnorm(100)
g2=sample(1:2,100,replace=TRUE)
g4=sample(1:4,100,replace=TRUE)
fit1=glmnet(x,y)
predict(fit1,newx=x[1:5,],s=c(0.01,0.005))
predict(fit1,type="coef")
fit2=glmnet(x,g2,family="binomial")
predict(fit2,type="response",newx=x[2:5,])
predict(fit2,type="nonzero")
fit3=glmnet(x,g4,family="multinomial")
predict(fit3,newx=x[1:3,],type="response",s=0.01)