stat_ecdf {ggplot2} | R Documentation |
Compute empirical cumulative distribution
Description
The empirical cumulative distribution function (ECDF) provides an alternative
visualisation of distribution. Compared to other visualisations that rely on
density (like geom_histogram()
), the ECDF doesn't require any
tuning parameters and handles both continuous and categorical variables.
The downside is that it requires more training to accurately interpret,
and the underlying visual tasks are somewhat more challenging.
Usage
stat_ecdf(
mapping = NULL,
data = NULL,
geom = "step",
position = "identity",
...,
n = NULL,
pad = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping |
Set of aesthetic mappings created by aes() . If specified and
inherit.aes = TRUE (the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping if there is no plot
mapping.
|
data |
The data to be displayed in this layer. There are three
options:
If NULL , the default, the data is inherited from the plot
data as specified in the call to ggplot() .
A data.frame , or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify() for which variables will be created.
A function will be called with a single argument,
the plot data. The return value must be a data.frame , and
will be used as the layer data. A function can be created
from a formula (e.g. ~ head(.x, 10) ).
|
geom |
The geometric object to use to display the data for this layer.
When using a stat_*() function to construct a layer, the geom argument
can be used to override the default coupling between stats and geoms. The
geom argument accepts the following:
A Geom ggproto subclass, for example GeomPoint .
A string naming the geom. To give the geom as a string, strip the
function name of the geom_ prefix. For example, to use geom_point() ,
give the geom as "point" .
For more information and other ways to specify the geom, see the
layer geom documentation.
|
position |
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position argument accepts the following:
The result of calling a position function, such as position_jitter() .
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_ prefix. For example,
to use position_jitter() , give the position as "jitter" .
For more information and other ways to specify the position, see the
layer position documentation.
|
... |
Other arguments passed on to layer() 's params argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the position argument, or aesthetics that are required
can not be passed through ... . Unknown arguments that are not part
of the 4 categories below are ignored.
Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, colour = "red"
or linewidth = 3 . The geom's documentation has an Aesthetics
section that lists the available options. The 'required' aesthetics
cannot be passed on to the params . Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
When constructing a layer using
a stat_*() function, the ... argument can be used to pass on
parameters to the geom part of the layer. An example of this is
stat_density(geom = "area", outline.type = "both") . The geom's
documentation lists which parameters it can accept.
Inversely, when constructing a layer using a
geom_*() function, the ... argument can be used to pass on parameters
to the stat part of the layer. An example of this is
geom_area(stat = "density", adjust = 0.5) . The stat's documentation
lists which parameters it can accept.
The key_glyph argument of layer() may also be passed on through
... . This can be one of the functions described as
key glyphs, to change the display of the layer in the legend.
|
n |
if NULL, do not interpolate. If not NULL, this is the number
of points to interpolate with.
|
pad |
If TRUE , pad the ecdf with additional points (-Inf, 0)
and (Inf, 1)
|
na.rm |
If FALSE (the default), removes missing values with
a warning. If TRUE silently removes missing values.
|
show.legend |
logical. Should this layer be included in the legends?
NA , the default, includes if any aesthetics are mapped.
FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
|
inherit.aes |
If FALSE , overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders() .
|
Details
The statistic relies on the aesthetics assignment to guess which variable to
use as the input and which to use as the output. Either x or y must be provided
and one of them must be unused. The ECDF will be calculated on the given aesthetic
and will be output on the unused one.
Computed variables
These are calculated by the 'stat' part of layers and can be accessed with delayed evaluation.
Examples
set.seed(1)
df <- data.frame(
x = c(rnorm(100, 0, 3), rnorm(100, 0, 10)),
g = gl(2, 100)
)
ggplot(df, aes(x)) +
stat_ecdf(geom = "step")
# Don't go to positive/negative infinity
ggplot(df, aes(x)) +
stat_ecdf(geom = "step", pad = FALSE)
# Multiple ECDFs
ggplot(df, aes(x, colour = g)) +
stat_ecdf()
[Package
ggplot2 version 3.5.1
Index]