geom_ribbon {ggplot2}R Documentation

Ribbons and area plots

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

geom_ribbon(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  ...,
  na.rm = FALSE,
  orientation = NA,
  show.legend = NA,
  inherit.aes = TRUE,
  outline.type = "both"
)

geom_area(
  mapping = NULL,
  data = NULL,
  stat = "align",
  position = "stack",
  na.rm = FALSE,
  orientation = NA,
  show.legend = NA,
  inherit.aes = TRUE,
  ...,
  outline.type = "upper"
)

stat_align(
  mapping = NULL,
  data = NULL,
  geom = "area",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

stat

The statistical transformation to use on the data for this layer. When using a ⁠geom_*()⁠ function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

  • A Stat ggproto subclass, for example StatCount.

  • A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".

  • For more information and other ways to specify the stat, see the layer stat documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

  • The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.

  • A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".

  • For more information and other ways to specify the position, see the layer position documentation.

...

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can not be passed through .... Unknown arguments that are not part of the 4 categories below are ignored.

  • Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an Aesthetics section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

  • When constructing a layer using a ⁠stat_*()⁠ function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.

  • Inversely, when constructing a layer using a ⁠geom_*()⁠ function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.

  • The key_glyph argument of layer() may also be passed on through .... This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

orientation

The orientation of the layer. The default (NA) automatically determines the orientation from the aesthetic mapping. In the rare event that this fails it can be given explicitly by setting orientation to either "x" or "y". See the Orientation section for more detail.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

outline.type

Type of the outline of the area; "both" draws both the upper and lower lines, "upper"/"lower" draws the respective lines only. "full" draws a closed polygon around the area.

geom

The geometric object to use to display the data for this layer. When using a ⁠stat_*()⁠ function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:

  • A Geom ggproto subclass, for example GeomPoint.

  • A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".

  • For more information and other ways to specify the geom, see the layer geom documentation.

Details

An area plot is the continuous analogue of a stacked bar chart (see geom_bar()), and can be used to show how composition of the whole varies over the range of x. Choosing the order in which different components is stacked is very important, as it becomes increasing hard to see the individual pattern as you move up the stack. See position_stack() for the details of stacking algorithm. To facilitate stacking, the default stat = "align" interpolates groups to a common set of x-coordinates. To turn off this interpolation, stat = "identity" can be used instead.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orientation is easy to deduce from a combination of the given mappings and the types of positional scales in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation can be specified directly using the orientation parameter, which can be either "x" or "y". The value gives the axis that the geom should run along, "x" being the default orientation you would expect for the geom.

Aesthetics

geom_ribbon() understands the following aesthetics (required aesthetics are in bold):

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_bar() for discrete intervals (bars), geom_linerange() for discrete intervals (lines), geom_polygon() for general polygons

Examples

# Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))

h + geom_ribbon(aes(ymin=0, ymax=level))
h + geom_area(aes(y = level))

# Orientation cannot be deduced by mapping, so must be given explicitly for
# flipped orientation
h + geom_area(aes(x = level, y = year), orientation = "y")

# Add aesthetic mappings
h +
  geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") +
  geom_line(aes(y = level))

# The underlying stat_align() takes care of unaligned data points
df <- data.frame(
  g = c("a", "a", "a", "b", "b", "b"),
  x = c(1, 3, 5, 2, 4, 6),
  y = c(2, 5, 1, 3, 6, 7)
)
a <- ggplot(df, aes(x, y, fill = g)) +
  geom_area()

# Two groups have points on different X values.
a + geom_point(size = 8) + facet_grid(g ~ .)

# stat_align() interpolates and aligns the value so that the areas can stack
# properly.
a + geom_point(stat = "align", position = "stack", size = 8)

# To turn off the alignment, the stat can be set to "identity"
ggplot(df, aes(x, y, fill = g)) +
  geom_area(stat = "identity")

[Package ggplot2 version 3.5.1 Index]