geom_polygon {ggplot2} | R Documentation |
Polygons
Description
Polygons are very similar to paths (as drawn by geom_path()
)
except that the start and end points are connected and the inside is
coloured by fill
. The group
aesthetic determines which cases
are connected together into a polygon. From R 3.6 and onwards it is possible
to draw polygons with holes by providing a subgroup aesthetic that
differentiates the outer ring points from those describing holes in the
polygon.
Usage
geom_polygon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping |
Set of aesthetic mappings created by aes() . If specified and
inherit.aes = TRUE (the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping if there is no plot
mapping.
|
data |
The data to be displayed in this layer. There are three
options:
If NULL , the default, the data is inherited from the plot
data as specified in the call to ggplot() .
A data.frame , or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify() for which variables will be created.
A function will be called with a single argument,
the plot data. The return value must be a data.frame , and
will be used as the layer data. A function can be created
from a formula (e.g. ~ head(.x, 10) ).
|
stat |
The statistical transformation to use on the data for this layer.
When using a geom_*() function to construct a layer, the stat
argument can be used the override the default coupling between geoms and
stats. The stat argument accepts the following:
A Stat ggproto subclass, for example StatCount .
A string naming the stat. To give the stat as a string, strip the
function name of the stat_ prefix. For example, to use stat_count() ,
give the stat as "count" .
For more information and other ways to specify the stat, see the
layer stat documentation.
|
position |
A position adjustment to use on the data for this layer. This
can be used in various ways, including to prevent overplotting and
improving the display. The position argument accepts the following:
The result of calling a position function, such as position_jitter() .
This method allows for passing extra arguments to the position.
A string naming the position adjustment. To give the position as a
string, strip the function name of the position_ prefix. For example,
to use position_jitter() , give the position as "jitter" .
For more information and other ways to specify the position, see the
layer position documentation.
|
rule |
Either "evenodd" or "winding" . If polygons with holes are
being drawn (using the subgroup aesthetic) this argument defines how the
hole coordinates are interpreted. See the examples in grid::pathGrob() for
an explanation.
|
... |
Other arguments passed on to layer() 's params argument. These
arguments broadly fall into one of 4 categories below. Notably, further
arguments to the position argument, or aesthetics that are required
can not be passed through ... . Unknown arguments that are not part
of the 4 categories below are ignored.
Static aesthetics that are not mapped to a scale, but are at a fixed
value and apply to the layer as a whole. For example, colour = "red"
or linewidth = 3 . The geom's documentation has an Aesthetics
section that lists the available options. The 'required' aesthetics
cannot be passed on to the params . Please note that while passing
unmapped aesthetics as vectors is technically possible, the order and
required length is not guaranteed to be parallel to the input data.
When constructing a layer using
a stat_*() function, the ... argument can be used to pass on
parameters to the geom part of the layer. An example of this is
stat_density(geom = "area", outline.type = "both") . The geom's
documentation lists which parameters it can accept.
Inversely, when constructing a layer using a
geom_*() function, the ... argument can be used to pass on parameters
to the stat part of the layer. An example of this is
geom_area(stat = "density", adjust = 0.5) . The stat's documentation
lists which parameters it can accept.
The key_glyph argument of layer() may also be passed on through
... . This can be one of the functions described as
key glyphs, to change the display of the layer in the legend.
|
na.rm |
If FALSE , the default, missing values are removed with
a warning. If TRUE , missing values are silently removed.
|
show.legend |
logical. Should this layer be included in the legends?
NA , the default, includes if any aesthetics are mapped.
FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
|
inherit.aes |
If FALSE , overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders() .
|
Aesthetics
geom_polygon()
understands the following aesthetics (required aesthetics are in bold):
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
See Also
geom_path()
for an unfilled polygon,
geom_ribbon()
for a polygon anchored on the x-axis
Examples
# When using geom_polygon, you will typically need two data frames:
# one contains the coordinates of each polygon (positions), and the
# other the values associated with each polygon (values). An id
# variable links the two together
ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)
positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)
)
# Currently we need to manually merge the two together
datapoly <- merge(values, positions, by = c("id"))
p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id))
p
# Which seems like a lot of work, but then it's easy to add on
# other features in this coordinate system, e.g.:
set.seed(1)
stream <- data.frame(
x = cumsum(runif(50, max = 0.1)),
y = cumsum(runif(50,max = 0.1))
)
p + geom_line(data = stream, colour = "grey30", linewidth = 5)
# And if the positions are in longitude and latitude, you can use
# coord_map to produce different map projections.
if (packageVersion("grid") >= "3.6") {
# As of R version 3.6 geom_polygon() supports polygons with holes
# Use the subgroup aesthetic to differentiate holes from the main polygon
holes <- do.call(rbind, lapply(split(datapoly, datapoly$id), function(df) {
df$x <- df$x + 0.5 * (mean(df$x) - df$x)
df$y <- df$y + 0.5 * (mean(df$y) - df$y)
df
}))
datapoly$subid <- 1L
holes$subid <- 2L
datapoly <- rbind(datapoly, holes)
p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id, subgroup = subid))
p
}
[Package
ggplot2 version 3.5.1
Index]