Frequency Domain Based Analysis: Dynamic PCA


[Up] [Top]

Documentation for package ‘freqdom’ version 2.0.5

Help Pages

freqdom-package Frequency domain basde analysis: dynamic PCA
%c% Convolute (filter) a multivariate time series using a time-domain filter
cov.structure Estimate cross-covariances of two stationary multivariate time series
dpca Compute Dynamic Principal Components and dynamic Karhunen Loeve extepansion
dpca.filters Compute DPCA filter coefficients
dpca.KLexpansion Dynamic KL expansion
dpca.scores Obtain dynamic principal components scores
dpca.var Proportion of variance explained
filter.process Convolute (filter) a multivariate time series using a time-domain filter
fourier.inverse Coefficients of a discrete Fourier transform
fourier.transform Computes the Fourier transformation of a filter given as 'timedom' object
freqdom Create an object corresponding to a frequency domain functional
freqdom.eigen Eigendecompose a frequency domain operator at each frequency
is.freqdom Checks if an object belongs to the class freqdom
is.timedom Checks if an object belongs to the class timedom
rar Simulate a multivariate autoregressive time series
rma Moving average process
spectral.density Compute empirical spectral density
timedom Defines a linear filter
timedom.norms Compute operator norms of elements of a filter
timedom.trunc Choose lags of an object of class 'timedom'
_PACKAGE Frequency domain basde analysis: dynamic PCA