dpca {freqdom} | R Documentation |
Compute Dynamic Principal Components and dynamic Karhunen Loeve extepansion
Description
Dynamic principal component analysis (DPCA) decomposes multivariate time series into uncorrelated components. Compared to classical principal components, DPCA decomposition outputs components which are uncorrelated in time, allowing simpler modeling of the processes and maximizing long run variance of the projection.
Usage
dpca(X, q = 30, freq = (-1000:1000/1000) * pi, Ndpc = dim(X)[2])
Arguments
X |
a vector time series given as a |
q |
window size for the kernel estimator, i.e. a positive integer. |
freq |
a vector containing frequencies in |
Ndpc |
is the number of principal component filters to compute as in |
Details
This convenience function applies the DPCA methodology and returns filters (dpca.filters
), scores
(dpca.scores
), the spectral density (spectral.density
), variances (dpca.var
) and
Karhunen-Leove expansion (dpca.KLexpansion
).
See the example for understanding usage, and help pages for details on individual functions.
Value
A list containing
-
scores
DPCA scores (
dpca.scores
) -
filters
DPCA filters (
dpca.filters
) -
spec.density
spectral density of
X
(spectral.density
) -
var
amount of variance explained by dynamic principal components (
dpca.var
) -
Xhat
Karhunen-Loeve expansion using
Ndpc
dynamic principal components (dpca.KLexpansion
)
References
Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.
Brillinger, D. Time Series (2001), SIAM, San Francisco.
Shumway, R., and Stoffer, D. Time series analysis and its applications: with R examples (2010), Springer Science & Business Media
Examples
X = rar(100,3)
# Compute DPCA with only one component
res.dpca = dpca(X, q = 5, Ndpc = 1)
# Compute PCA with only one component
res.pca = prcomp(X, center = TRUE)
res.pca$x[,-1] = 0
# Reconstruct the data
var.dpca = (1 - sum( (res.dpca$Xhat - X)**2 ) / sum(X**2))*100
var.pca = (1 - sum( (res.pca$x %*% t(res.pca$rotation) - X)**2 ) / sum(X**2))*100
cat("Variance explained by DPCA:\t",var.dpca,"%\n")
cat("Variance explained by PCA:\t",var.pca,"%\n")