cov.structure {freqdom}R Documentation

Estimate cross-covariances of two stationary multivariate time series

Description

This function computes the empirical cross-covariance of two stationary multivariate time series. If only one time series is provided it determines the empirical autocovariance function.

Usage

cov.structure(X, Y = X, lags = 0)

Arguments

X

vector or matrix. If matrix, then each row corresponds to a timepoint of a vector time series.

Y

vector or matrix. If matrix, then each row corresponds to a timepoint of a vector time series.

lags

an integer-valued vector (1,,K)(\ell_1,\ldots, \ell_K) containing the lags for which covariances are calculated.

Details

Let [X1,,XT][X_1,\ldots, X_T]^\prime be a T×d1T\times d_1 matrix and [Y1,,YT][Y_1,\ldots, Y_T]^\prime be a T×d2T\times d_2 matrix. We stack the vectors and assume that (Xt,Yt)(X_t^\prime,Y_t^\prime)^\prime is a stationary multivariate time series of dimension d1+d2d_1+d_2. This function determines empirical lagged covariances between the series (Xt)(X_t) and (Yt)(Y_t). More precisely it determines C^XY(h)\widehat{C}^{XY}(h) for hh\in lags, where C^XY(h)\widehat{C}^{XY}(h) is the empirical version of Cov(Xh,Y0)\mathrm{Cov}(X_h,Y_0). For a sample of size TT we set μ^X=1Tt=1TXt\hat\mu^X=\frac{1}{T}\sum_{t=1}^T X_t and μ^Y=1Tt=1TYt\hat\mu^Y=\frac{1}{T}\sum_{t=1}^T Y_t and

C^XY(h)=1Tt=1Th(Xt+hμ^X)(Ytμ^Y)\hat C^{XY}(h) = \frac{1}{T}\sum_{t=1}^{T-h} (X_{t+h} - \hat\mu^X)(Y_{t} - \hat\mu^Y)'

and for h<0h < 0

C^XY(h)=1Tt=h+1T(Xt+hμ^X)(Ytμ^Y).\hat C^{XY}(h) = \frac{1}{T}\sum_{t=|h|+1}^{T} (X_{t+h} - \hat\mu^X)(Y_{t} - \hat\mu^Y)'.

Value

An object of class timedom. The list contains


[Package freqdom version 2.0.5 Index]