Functional Time Series: Dynamic Functional Principal Components


[Up] [Top]

Documentation for package ‘freqdom.fda’ version 1.0.1

Help Pages

freqdom.fda-package Functional time series: dynamic FPCA
fda.ts Functional time series: dynamic FPCA
fts.cov.structure Estimate autocovariance and cross-covariances operators
fts.dpca Compute Functional Dynamic Principal Components and dynamic Karhunen Loeve extepansion
fts.dpca.filters Functional dynamic PCA filters
fts.dpca.KLexpansion Dynamic KL expansion
fts.dpca.scores Functional dynamic principal component scores
fts.dpca.var Proportion of variance explained by dynamic principal components
fts.freqdom Creates an object of class 'fts.freqdom'.
fts.plot.covariance Contour plot for the kernels of cross-covariance operators.
fts.plot.filters Plot kernels
fts.plot.operators Contour plot of operator kernels.
fts.rar Simulate functional autoregressive processes
fts.rma Simulate functional moving average processes
fts.spectral.density Functional spectral and cross-spectral density operator
fts.timedom Object of class 'fts.timedom'
is.fts.freqdom Checks if an object belongs to the class fts.freqdom
is.fts.timedom Checks if an object belongs to the class fts.timedom
pm10 PM10 dataset
_PACKAGE Functional time series: dynamic FPCA