fts.dpca {freqdom.fda} | R Documentation |
Compute Functional Dynamic Principal Components and dynamic Karhunen Loeve extepansion
Description
Functional dynamic principal component analysis (FDPCA) decomposes functional time series to a vector time series with uncorrelated components. Compared to classical functional principal components, FDPCA decomposition outputs components which are uncorrelated in time, allowing simpler modeling of the processes and maximizing long run variance of the projection.
Usage
fts.dpca(X, q = 30, freq = (-1000:1000/1000) * pi, Ndpc = X$basis$nbasis)
Arguments
X |
a functional time series as a |
q |
window size for the kernel estimator, i.e. a positive integer. |
freq |
a vector containing frequencies in |
Ndpc |
is the number of principal component filters to compute as in |
Details
This convenient function applies the FDPCA methodology and returns filters (fts.dpca.filters
), scores
(fts.dpca.scores
), the spectral density (fts.spectral.density
), variances (fts.dpca.var
) and
Karhunen-Leove expansion (fts.dpca.KLexpansion
).
See the example for understanding usage, and help pages for details on individual functions.
Value
A list containing
-
scores
\quad
DPCA scores (fts.dpca.scores
) -
filters
\quad
DPCA filters (fts.dpca.filters
) -
spec.density
\quad
spectral density ofX
(fts.spectral.density
) -
var
\quad
amount of variance explained by dynamic principal components (fts.dpca.var
) -
Xhat
\quad
Karhunen-Loeve expansion usingNdpc
dynamic principal components (fts.dpca.KLexpansion
)
References
Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.
Brillinger, D. Time Series (2001), SIAM, San Francisco.
Shumway, R., and Stoffer, D. Time series analysis and its applications: with R examples (2010), Springer Science & Business Media
Examples
# Load example PM10 data from Graz, Austria
data(pm10) # loads functional time series pm10 to the environment
X = center.fd(pm10)
# Compute functional dynamic principal components with only one component
res.dpca = fts.dpca(X, Ndpc = 1, freq=(-25:25/25)*pi) # leave default freq for higher precision
plot(res.dpca$Xhat)
fts.plot.filters(res.dpca$filters)
# Compute functional PCA with only one component
res.pca = prcomp(t(X$coefs), center = TRUE)
res.pca$x[,-1] = 0
# Compute empirical variance explained
var.dpca = (1 - sum( (res.dpca$Xhat$coefs - X$coefs)**2 ) / sum(X$coefs**2))*100
var.pca = (1 - sum( (res.pca$x %*% t(res.pca$rotation) - t(X$coefs) )**2 ) / sum(X$coefs**2))*100
cat("Variance explained by PCA (empirical):\t\t",var.pca,"%\n")
cat("Variance explained by PCA (theoretical):\t",
(1 - (res.pca$sdev[1] / sum(res.pca$sdev)))*100,"%\n")
cat("Variance explained by DPCA (empirical):\t\t",var.dpca,"%\n")
cat("Variance explained by DPCA (theoretical):\t",(res.dpca$var[1])*100,"%\n")
# Plot filters
fts.plot.filters(res.dpca$filters)
# Plot spectral density (note that in case of these data it's concentrated around 0)
fts.plot.operators(res.dpca$spec.density,freq = c(-2,-3:3/30 * pi,2))
# Plot covariance of X
fts.plot.covariance(X)
# Compare values of the first PC scores with the first DPC scores
plot(res.pca$x[,1],t='l',xlab = "Time",ylab="Score", lwd = 2.5)
lines(res.dpca$scores[,1], col=2, lwd = 2.5)
legend(0,4,c("first PC score","first DPC score"), # puts text in the legend
lty=c(1,1),lwd=c(2.5,2.5), col=1:2)