fts.freqdom {freqdom.fda}R Documentation

Creates an object of class fts.freqdom.

Description

Creates an object of class fts.freqdom.

Usage

fts.freqdom(F, basisX, basisY = basisX)

Arguments

F

an object of class freqdom.

basisX

an object of class basis.fd (see create.basis)

basisY

an object of class basis.fd (see create.basis)

Details

This class is used to describe a frequency domain operator (for example a spectral density operator) on selected frequencies. Formally we consider an object of class freqdom and add some basis functions. Depending on the context, we have different interpretations for the new object.

(I) In order to define an operator which maps between two functions spaces, the we interpret F$operators as coefficients in the basis function expansion of the kernel of some finite rank operators

Fk:span(basisY)+ispan(basisY)span(basisX)+ispan(basisX).\mathcal{F}_k:\mathrm{span}(\code{basisY})+\mathrm{i}\, \mathrm{span}(\code{basisY})\to\mathrm{span}(\code{basisX})+\mathrm{i}\, \mathrm{span}(\code{basisX}).

The kernels are fk(u,v)=b1(u)Fkb2(v)f_k(u,v)=\boldsymbol{b}_1^\prime(u)\, F_k\, \boldsymbol{b}_2(v), where b1(u)=(b11(u),,b1d1(u))\boldsymbol{b_1}(u)=(b_{11}(u),\ldots, b_{1d_1}(u))^\prime and b2(u)=(b21(u),,b2d1(u))\boldsymbol{b_2}(u)=(b_{21}(u),\ldots, b_{2d_1}(u))^\prime are the basis functions provided by the arguments basisX and basisY, respectively. Moreover, we consider frequencies {ω1,,ωK}[π,π]\{\omega_1,\ldots, \omega_K\}\subset[-\pi,\pi]. The object this function creates corresponds to the mapping ωkfk(u,v)\omega_k \mapsto f_k(u,v).

(II) We may ignore basisX, and represent the linear mapping

Fk:span(basisY)+ispan(basisY)Cd1,\mathcal{F}_k:\mathrm{span}(\code{basisY})+\mathrm{i}\, \mathrm{span}(\code{basisY})\to C^{d_1},

by considering fk(v):=Fkb2(v)f_k(v):=F_k\,\boldsymbol{b}_2(v) and Fk(x)=fk(v)x(v)dv\mathcal{F}_k(x)=\int f_k(v)x(v)dv.

(III) We may ignore basisY, and represent the linear mapping

Fk:Cd1span(basisX)+ispan(basisX),\mathcal{F}_k: C^{d_1}\to\mathrm{span}(\code{basisX})+\mathrm{i}\, \mathrm{span}(\code{basisX}),

by considering fk(u):=b1(u)Fkf_k(u):=\boldsymbol{b}_1^\prime(u)F_k and Fk(y)=fk(u)y\mathcal{F}_k(y)=f_k(u)y.

Value

Returns an object of class fts.freqdom. An object of class fts.freqdom is a list containing the following components:

See Also

The multivariate equivalent in the freqdom package: freqdom


[Package freqdom.fda version 1.0.1 Index]