Quickly Create Elegant Regression Results Tables and Plots when Modelling


[Up] [Top]

Documentation for package ‘finalfit’ version 1.0.8

Help Pages

B C D E F G H L M O P R S W

finalfit-package finalfit: Quickly create elegant final results tables and plots when modelling.

-- B --

boot_compare Compare bootstrapped distributions
boot_predict Bootstrap simulation for model prediction

-- C --

check_recode Check accurate recoding of variables
coefficient_plot Produce a coefficient table and plot
colon_s Chemotherapy for Stage B/C colon cancer
coxphmulti Cox proprotional hazards multivariable models: 'finalfit' model wrapper
coxphuni Cox proprotional hazards univariable models: 'finalfit' model wrapper
crrmulti Competing risks multivariable regression: 'finalfit' model wrapper
crruni Competing risks univariable regression: 'finalfit' model wrapper

-- D --

dependent_label Make a label for the dependent variable

-- E --

extract_variable_label Extract variable labels from dataframe

-- F --

ff_column_totals Add column totals to 'summary_factorlist()' output
ff_expand Summarise with mode and mean/median and expand given factors
ff_formula Generate formula as character string
ff_glimpse Descriptive statistics for dataframe
ff_interaction Make an interaction variable and add to dataframe
ff_label Label a variable
ff_merge Merge a 'summary_factorlist()' table with any number of model results tables.
ff_metrics Generate common metrics for regression model results
ff_metrics.coxph Generate common metrics for regression model results
ff_metrics.coxphlist Generate common metrics for regression model results
ff_metrics.glm Generate common metrics for regression model results
ff_metrics.glmerMod Generate common metrics for regression model results
ff_metrics.glmlist Generate common metrics for regression model results
ff_metrics.lm Generate common metrics for regression model results
ff_metrics.lmerMod Generate common metrics for regression model results
ff_metrics.lmlist Generate common metrics for regression model results
ff_mode Return the most frequent level in a factor
ff_newdata Generate newdata for simulations
ff_parse_formula Parse a formula to finalfit grammar
ff_percent_only Include only percentages for factors in 'summary_factorlist' output
ff_permute Permuate explanatory variables to produce multiple output tables for common regression models
ff_plot Produce a table and plot
ff_relabel Relabel variables in a data frame
ff_relabel_df Relabel variables from data frame after tidyverse functions
ff_remove_p Remove p-value from output
ff_remove_ref Remove regression reference level row from table
ff_row_totals Add row totals to 'summary_factorlist()' output
ff_stratify_helper Help making stratified summary_factorlist tables
finalfit Final output tables for common regression models
finalfit.coxph Final output tables for common regression models
finalfit.glm Final output tables for common regression models
finalfit.lm Final output tables for common regression models
finalfit_column_totals Add column totals to 'summary_factorlist()' output
finalfit_expand Summarise with mode and mean/median and expand given factors
finalfit_formula Generate formula as character string
finalfit_glimpse Descriptive statistics for dataframe
finalfit_interaction Make an interaction variable and add to dataframe
finalfit_label Label a variable
finalfit_merge Merge a 'summary_factorlist()' table with any number of model results tables.
finalfit_mode Return the most frequent level in a factor
finalfit_newdata Generate newdata for simulations
finalfit_percent_only Include only percentages for factors in 'summary_factorlist' output
finalfit_permute Permuate explanatory variables to produce multiple output tables for common regression models
finalfit_plot Produce a table and plot
finalfit_relabel Relabel variables in a data frame
finalfit_relabel_df Relabel variables from data frame after tidyverse functions
finalfit_remove_p Remove p-value from output
finalfit_remove_ref Remove regression reference level row from table
finalfit_row_totals Add row totals to 'summary_factorlist()' output
fit2df Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.coxme Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.coxph Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.coxphlist Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.crr Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.crrlist Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.glm Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.glmboot Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.glmerMod Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.glmlist Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.lm Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.lmerMod Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.lmlist Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.mipo Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.stanfit Extract model fit results to dataframe (generic): 'finalfit' model extractors
fit2df.svyglmlist Extract model fit results to dataframe (generic): 'finalfit' model extractors
format_n_percent Format n and percent as a character

-- G --

glmmixed Mixed effects binomial logistic regression models: 'finalfit' model wrapper
glmmulti Binomial logistic regression multivariable models: 'finalfit' model wrapper
glmmulti_boot Binomial logistic regression multivariable models with bootstrapped confidence intervals: 'finalfit' model wrapper
glmuni Binomial logistic regression univariable models: 'finalfit' model wrapper

-- H --

hr_plot Produce a hazard ratio table and plot

-- L --

labels_to_column Labels to column names
labels_to_level Labels to level
lmmixed Mixed effects linear regression models: 'finalfit' model wrapper
lmmulti Linear regression multivariable models: 'finalfit' model wrapper
lmuni Linear regression univariable models: 'finalfit' model wrapper

-- M --

metrics_hoslem Hosmer-Lemeshow goodness of fit test
missing_compare Compare missing data
missing_glimpse Summary of missing values
missing_pairs Missing values pairs plot
missing_pattern Characterise missing data for 'finalfit' models
missing_plot Missing values occurrence plot
missing_predictorMatrix Create predictorMatrix for use with mice

-- O --

or_plot Produce an odds ratio table and plot

-- P --

p_tidy Round p-values but keep trailing zeros

-- R --

rm_duplicates Remove duplicates and replace
rm_empty_block Remove rows where all specified variables are missing
round_tidy Round values but keep trailing zeros

-- S --

summary_df Summarise with mode for factors and mean/median for numeric variables
summary_factorlist Summarise a set of factors (or continuous variables) by a dependent variable
summary_factorlist_stratified Summarise a set of factors (or continuous variables) by a dependent variable
surv_plot Plot survival curves with number-at-risk table
svyglmmulti Multivariable survey-weighted generalised linear models
svyglmuni Univariable survey-weighted generalised linear models

-- W --

wcgs Western Collaborative Group Study