missing_pairs {finalfit} | R Documentation |
Missing values pairs plot
Description
Compare the occurence of missing values in all variables by each other.
Suggest limit the number of variables to a maximum of around six.
Dependent
and explanatory
are for convenience of variable
selection, are optional, and have no other specific function.
Usage
missing_pairs(
.data,
dependent = NULL,
explanatory = NULL,
use_labels = TRUE,
title = NULL,
position = "stack",
showXAxisPlotLabels = TRUE,
showYAxisPlotLabels = FALSE
)
Arguments
.data |
Data frame. |
dependent |
Character vector. Optional name of dependent variable. |
explanatory |
Character vector. Optional name(s) of explanatory variables. |
use_labels |
Use variable label names in plot labelling. |
title |
Character vector. Optional title for plot. |
position |
For discrete variables, choose "stack" or "fill" to show counts or proportions. |
showXAxisPlotLabels |
Show x-axis plot labels. |
showYAxisPlotLabels |
Show y-axis plot labels. |
Value
A plot matrix comparing missing values in all variables against each other.
Examples
## Not run:
explanatory = c("age", "nodes", "age.factor", "sex.factor", "obstruct.factor", "perfor.factor")
dependent = 'mort_5yr'
colon_s %>%
missing_pairs(dependent, explanatory)
## End(Not run)
[Package finalfit version 1.0.8 Index]