svyglmmulti {finalfit} | R Documentation |
Multivariable survey-weighted generalised linear models
Description
Wrapper for svyglm
. Fit a generalised linear model to
data from a complex survey design, with inverse-probability weighting and
design-based standard errors.
Usage
svyglmmulti(design, dependent, explanatory, ...)
Arguments
design |
Survey design. |
dependent |
Character vector of length 1: name of depdendent variable (must have 2 levels). |
explanatory |
Character vector of any length: name(s) of explanatory variables. |
... |
Other arguments to be passed to |
Value
A list of univariable fitted model outputs. Output is of class
svyglmlist
.
See Also
Other finalfit model wrappers:
coxphmulti()
,
coxphuni()
,
crrmulti()
,
crruni()
,
glmmixed()
,
glmmulti_boot()
,
glmmulti()
,
glmuni()
,
lmmixed()
,
lmmulti()
,
lmuni()
,
svyglmuni()
Examples
# Examples taken from survey::svyglm() help page.
library(survey)
library(dplyr)
data(api)
dependent = "api00"
explanatory = c("ell", "meals", "mobility")
library(survey)
library(dplyr)
data(api)
apistrat = apistrat %>%
mutate(
api00 = ff_label(api00, "API in 2000 (api00)"),
ell = ff_label(ell, "English language learners (percent)(ell)"),
meals = ff_label(meals, "Meals eligible (percent)(meals)"),
mobility = ff_label(mobility, "First year at the school (percent)(mobility)"),
sch.wide = ff_label(sch.wide, "School-wide target met (sch.wide)")
)
# Linear example
dependent = "api00"
explanatory = c("ell", "meals", "mobility")
# Stratified design
dstrat = svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
# Univariable fit
fit_uni = dstrat %>%
svyglmuni(dependent, explanatory) %>%
fit2df(estimate_suffix = " (univariable)")
# Multivariable fit
fit_multi = dstrat %>%
svyglmmulti(dependent, explanatory) %>%
fit2df(estimate_suffix = " (multivariable)")
# Pipe together
apistrat %>%
summary_factorlist(dependent, explanatory, fit_id = TRUE) %>%
ff_merge(fit_uni) %>%
ff_merge(fit_multi) %>%
select(-fit_id, -index) %>%
dependent_label(apistrat, dependent)
# Binomial example
## Note model family needs specified and exponentiation if desired
dependent = "sch.wide"
explanatory = c("ell", "meals", "mobility")
# Univariable fit
fit_uni = dstrat %>%
svyglmuni(dependent, explanatory, family = "quasibinomial") %>%
fit2df(exp = TRUE, estimate_name = "OR", estimate_suffix = " (univariable)")
# Multivariable fit
fit_multi = dstrat %>%
svyglmmulti(dependent, explanatory, family = "quasibinomial") %>%
fit2df(exp = TRUE, estimate_name = "OR", estimate_suffix = " (multivariable)")
# Pipe together
apistrat %>%
summary_factorlist(dependent, explanatory, fit_id = TRUE) %>%
ff_merge(fit_uni) %>%
ff_merge(fit_multi) %>%
select(-fit_id, -index) %>%
dependent_label(apistrat, dependent)
[Package finalfit version 1.0.8 Index]