ParametricJob {eplusr} | R Documentation |
Create and Run Parametric Analysis, and Collect Results
Description
ParametricJob
class provides a prototype of conducting parametric analysis
of EnergyPlus simulations.
param_job()
takes an IDF and EPW as input and returns a ParametricJob
.
For details on ParametricJob
, please see ParametricJob class.
Usage
param_job(idf, epw)
Arguments
idf |
A path to EnergyPlus IDF or IMF file or an |
epw |
A path to EnergyPlus EPW file or an |
Details
Basically, it is a collection of multiple EplusJob
objects. However, the
model is first parsed and the Idf object is stored internally, instead of
storing only the path of Idf like in EplusJob class. Also, an object in
Output:SQLite
with Option Type
value of SimpleAndTabular
will be
automatically created if it does not exists, like Idf class does.
Value
A ParametricJob
object.
Super class
eplusr::EplusGroupJob
-> ParametricJob
Methods
Public methods
Inherited methods
eplusr::EplusGroupJob$errors()
eplusr::EplusGroupJob$kill()
eplusr::EplusGroupJob$list_files()
eplusr::EplusGroupJob$list_table()
eplusr::EplusGroupJob$locate_output()
eplusr::EplusGroupJob$output_dir()
eplusr::EplusGroupJob$read_mdd()
eplusr::EplusGroupJob$read_rdd()
eplusr::EplusGroupJob$read_table()
eplusr::EplusGroupJob$report_data()
eplusr::EplusGroupJob$report_data_dict()
eplusr::EplusGroupJob$status()
eplusr::EplusGroupJob$tabular_data()
Method new()
Create a ParametricJob
object
Usage
ParametricJob$new(idf, epw)
Arguments
idf
Path to EnergyPlus IDF file or an
Idf
object.epw
Path to EnergyPlus EPW file or an
Epw
object.epw
can also beNULL
which will force design-day-only simulation when$run()
method is called. Note this needs at least oneSizing:DesignDay
object exists in the Idf.
Returns
A ParametricJob
object.
Examples
\dontrun{ if (is_avail_eplus("8.8")) { path_idf <- path_eplus_example("8.8", "5Zone_Transformer.idf") path_epw <- path_eplus_weather("8.8", "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw") # create from an IDF and an EPW param <- param_job(path_idf, path_epw) param <- ParametricJob$new(path_idf, path_epw) # create from an Idf and an Epw object param_job(read_idf(path_idf), read_epw(path_epw)) } }
Method version()
Get the version of seed IDF
Usage
ParametricJob$version()
Details
$version()
returns the version of input seed Idf object.
Returns
A base::numeric_version()
object.
Examples
\dontrun{ param$version() }
Method seed()
Get the seed Idf object
Usage
ParametricJob$seed()
Details
$seed()
returns the parsed input seed Idf object.
Examples
\dontrun{ param$seed() }
Method weather()
Get the Epw object
Usage
ParametricJob$weather()
Details
$weather()
returns the input Epw object. If no Epw is provided
when creating the ParametricJob
object, NULL
is returned.
Examples
\dontrun{ param$weather() }
Method param()
Set parameters for parametric simulations
Usage
ParametricJob$param(..., .names = NULL, .cross = FALSE)
Arguments
...
Lists of paramter definitions. Please see above on the syntax.
.names
A character vector of the parameter names. If
NULL
, the parameter will be named in formatparam_X
, whereX
is the index of parameter. Default:NULL
..cross
If
TRUE
, all combinations of parameter values will be used to create models. IfFALSE
, each parameter should have the same length of values. Default:FALSE
.
Details
$param()
takes parameter definitions in list format, which is
similar to Idf$set() except that each field is not assigned
with a single value, but a vector of any length, indicating the
levels of each parameter.
Similar like the way of modifying object field values in Idf$set(), there are 3 different ways of defining a parameter in epluspar:
-
object = list(field = c(value1, value2, ...))
: Whereobject
is a valid object ID or name. Note object ID should be denoted with two periods..
, e.g...10
indicates the object with ID10
, It will set that specific field in that object as one parameter. -
.(object, object) := list(field = c(value1, value2, ...))
: Simimar like above, but note the use of.()
in the left hand side. You can put multiple object ID or names in.()
. It will set the field of all specified objects as one parameter. -
class := list(field = c(value1, value2, ...))
: Note the use of:=
instead of=
. The main difference is that, unlike=
, the left hand side of:=
should be a valid class name in current Idf. It will set that field of all objects in specified class as one parameter.
For example, the code block below defines 3 parameters:
Field
Fan Total Efficiency
in object namedSupply Fan 1
in classFan:VariableVolume
class, with 10 levels being 0.1 to 1.0 with a 0.1 step.Field
Thickness
in all objects in classMaterial
, with 10 levels being 0.01 to 0.1 m with a 0.1 m step.Field
Conductivity
in all objects in classMaterial
, with 10 levels being 0.1 to 1.0 W/m-K with a 0.1 W/m-K step.
param$param( `Supply Fan 1` = list(Fan_Total_Efficiency = seq(0.1, 1.0, 0.1)), Material := list( Thickness = seq(0.01, 0.1, 0.1), Conductivity = seq(0.1, 1.0, 0.1) ) )
Returns
The modified ParametricJob
object invisibly.
Examples
\dontrun{ param$param( Material := .( Thickness = seq(0.1, 1, length.out = 3), Conductivity = seq(0.1, 0.6, length.out = 3) ), "Supply Fan 1" = .(fan_total_efficiency = c(0.1, 0.5, 0.8)) ) # specify parameter values param$param( Material := .( Thickness = seq(0.1, 1, length.out = 3), Conductivity = seq(0.1, 0.6, length.out = 3) ), "Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8)), .names = c("thickness", "conduct", "fan_eff") ) # each parameter should have the same length of values try( param$param( Material := list(Thickness = c(0.1, 0.2)), "Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8)) ) ) # use all combinations of parameters param$param( Material := list( Thickness = seq(0.1, 1, length.out = 3), Conductivity = seq(0.1, 0.6, length.out = 3) ), "Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8)), .cross = TRUE ) }
Method apply_measure()
Create parametric models
Usage
ParametricJob$apply_measure(measure, ..., .names = NULL)
Arguments
measure
A function that takes an
Idf
and other arguments as input and returns an Idf object as output....
Arguments except first
Idf
argument that are passed to thatmeasure
..names
A character vector of the names of parametric
Idf
s. IfNULL
, the newIdf
s will be named in formatmeasure_name + number
.
Details
$apply_measure()
allows to apply a measure to an Idf and creates
parametric models for analysis. Basically, a measure is just a
function that takes an Idf object and other arguements as input, and
returns a modified Idf object as output. Use ...
to supply
different arguments, except for the first Idf
argument, to that
measure. Under the hook, base::mapply()
is used to create multiple
Idfs according to the input values.
Returns
The modified ParametricJob
object itself, invisibly.
Examples
\dontrun{ # create a measure to change the orientation of the building rotate_building <- function(idf, degree = 0L) { if (!idf$is_valid_class("Building")) { stop("Input model does not have a Building object") } if (degree > 360 || degree < -360 ) { stop("Input degree should in range [-360, 360]") } cur <- idf$Building$North_Axis new <- cur + degree if (new > 360) { new <- new %% 360 warning("Calculated new north axis is greater than 360. ", "Final north axis will be ", new ) } else if (new < -360) { new <- new %% -360 warning("Calculated new north axis is smaller than -360. ", "Final north axis will be ", new ) } idf$Building$North_Axis <- new idf } # apply measure # this will create 12 models param$apply_measure(rotate_building, degree = seq(30, 360, 30)) # apply measure with new names specified param$apply_measure(rotate_building, degree = seq(30, 360, 30), .names = paste0("rotate_", seq(30, 360, 30)) ) }
Method models()
Get created parametric Idf objects
Usage
ParametricJob$models(names = NULL)
Arguments
names
A character vector of new names for parametric models. If a single string, it will be used as a prefix and all models will be named in pattern
names_X
, whereX
is the model index. IfNULL
, existing parametric models are directly returned. Default:NULL
.
Details
$models()
returns a list of parametric models generated using input
Idf object and
$apply_measure()
method. Model names are assigned in the same way as the .names
arugment in
$apply_measure()
.
If no measure has been applied, NULL
is returned. Note that it is
not recommended to conduct any extra modification on those models
directly, after they were created using
$apply_measure()
,
as this may lead to an un-reproducible process. A warning message
will be issued if any of those models has been modified when running
simulations.
Examples
\dontrun{ param$models() }
Method cases()
Get a summary of parametric models and parameters
Usage
ParametricJob$cases()
Details
$cases()
returns a data.table giving a
summary of parametric models and parameter values.
The returned data.table
has the following columns:
-
index
: Integer type. The indices of parameter models -
case
: Character type. The names of parameter models Parameters: Type depends on the parameter values. Each parameter stands in a separate column. For parametric models created using
ParametricJob$param()
, the column names will be the same as what you specified in.names
. For the case ofParametricJob$apply_measure()
, this will be the argument names of the measure functions.
Returns
If no parametric models have been created, NULL
is
returned. Otherwise, a data.table.
Examples
\dontrun{ param$cases() }
Method save()
Save parametric models
Usage
ParametricJob$save(dir = NULL, separate = TRUE, copy_external = FALSE)
Arguments
dir
The parent output directory for models to be saved. If
NULL
, the directory of the seed model will be used. Default:NULL
.separate
If
TRUE
, all models are saved in a separate folder with each model's name under specified directory. IfFALSE
, all models are saved in the specified directory. Default:TRUE
.copy_external
Only applicable when
separate
isTRUE
. IfTRUE
, the external files that everyIdf
object depends on will also be copied into the saving directory. The values of file paths in the Idf will be changed automatically.
Details
$save()
saves all parametric models in specified folder. An error
will be issued if no measure has been applied.
Returns
A data.table::data.table()
with two columns:
model: The path of saved parametric model files.
weather: The path of saved weather files.
Examples
\dontrun{ # save all parametric models with each model in a separate folder param$save(tempdir()) # save all parametric models with all models in the same folder param$save(tempdir(), separate = FALSE) }
Method run()
Run parametric simulations
Usage
ParametricJob$run( dir = NULL, wait = TRUE, force = FALSE, copy_external = FALSE, echo = wait, separate = TRUE, readvars = TRUE )
Arguments
dir
The parent output directory for specified simulations. Outputs of each simulation are placed in a separate folder under the parent directory. If
NULL
, the directory of the seed model will be used. Default:NULL
.wait
If
TRUE
, R will hang on and wait all EnergyPlus simulations finish. IfFALSE
, all EnergyPlus simulations are run in the background. Default:TRUE
.force
Only applicable when the last simulation runs with
wait
equals toFALSE
and is still running. IfTRUE
, current running job is forced to stop and a new one will start. Default:FALSE
.copy_external
If
TRUE
, the external files that currentIdf
object depends on will also be copied into the simulation output directory. The values of file paths in the Idf will be changed automatically. Currently, onlySchedule:File
class is supported. This ensures that the output directory will have all files needed for the model to run. Default isFALSE
.echo
Only applicable when
wait
isTRUE
. Whether to simulation status. Default: same aswait
.separate
If
TRUE
, all models are saved in a separate folder with each model's name underdir
when simulation. IfFALSE
, all models are saved indir
when simulation. Default:TRUE
.readvars
If
TRUE
, theReadVarESO
post-processor will run to generate CSV files from the ESO output. Since those CSV files are never used when extracting simulation data in eplusr, setting it toFALSE
can speed up the simulation if there are hundreds of output variables or meters. Default:TRUE
.
Details
$run()
runs all parametric simulations in parallel. The number of
parallel EnergyPlus process can be controlled by
eplusr_option("num_parallel")
. If wait
is FALSE, then the job
will be run in the background. You can get updated job status by just
printing the ParametricJob
object.
Returns
The ParametricJob
object itself, invisibly.
Examples
\dontrun{ # run parametric simulations param$run(wait = TRUE, echo = FALSE) # run in background param$run(wait = FALSE) # get detailed job status by printing print(param) }
Method print()
Print ParametricJob
object
Usage
ParametricJob$print()
Details
$print()
shows the core information of this ParametricJob
,
including the path of IDFs and EPWs and also the simulation job
status.
$print()
is quite useful to get the simulation status, especially
when wait
is FALSE
in $run()
. The job status will be updated
and printed whenever $print()
is called.
Returns
The ParametricJob
object itself, invisibly.
Examples
\dontrun{ param$print() Sys.sleep(10) param$print() }
Author(s)
Hongyuan Jia
See Also
eplus_job()
for creating an EnergyPlus single simulation job.
Examples
## ------------------------------------------------
## Method `ParametricJob$new`
## ------------------------------------------------
## Not run:
if (is_avail_eplus("8.8")) {
path_idf <- path_eplus_example("8.8", "5Zone_Transformer.idf")
path_epw <- path_eplus_weather("8.8", "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw")
# create from an IDF and an EPW
param <- param_job(path_idf, path_epw)
param <- ParametricJob$new(path_idf, path_epw)
# create from an Idf and an Epw object
param_job(read_idf(path_idf), read_epw(path_epw))
}
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$version`
## ------------------------------------------------
## Not run:
param$version()
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$seed`
## ------------------------------------------------
## Not run:
param$seed()
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$weather`
## ------------------------------------------------
## Not run:
param$weather()
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$param`
## ------------------------------------------------
## Not run:
param$param(
Material := .(
Thickness = seq(0.1, 1, length.out = 3),
Conductivity = seq(0.1, 0.6, length.out = 3)
),
"Supply Fan 1" = .(fan_total_efficiency = c(0.1, 0.5, 0.8))
)
# specify parameter values
param$param(
Material := .(
Thickness = seq(0.1, 1, length.out = 3),
Conductivity = seq(0.1, 0.6, length.out = 3)
),
"Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8)),
.names = c("thickness", "conduct", "fan_eff")
)
# each parameter should have the same length of values
try(
param$param(
Material := list(Thickness = c(0.1, 0.2)),
"Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8))
)
)
# use all combinations of parameters
param$param(
Material := list(
Thickness = seq(0.1, 1, length.out = 3),
Conductivity = seq(0.1, 0.6, length.out = 3)
),
"Supply Fan 1" = list(fan_total_efficiency = c(0.1, 0.5, 0.8)),
.cross = TRUE
)
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$apply_measure`
## ------------------------------------------------
## Not run:
# create a measure to change the orientation of the building
rotate_building <- function(idf, degree = 0L) {
if (!idf$is_valid_class("Building")) {
stop("Input model does not have a Building object")
}
if (degree > 360 || degree < -360 ) {
stop("Input degree should in range [-360, 360]")
}
cur <- idf$Building$North_Axis
new <- cur + degree
if (new > 360) {
new <- new %% 360
warning("Calculated new north axis is greater than 360. ",
"Final north axis will be ", new
)
} else if (new < -360) {
new <- new %% -360
warning("Calculated new north axis is smaller than -360. ",
"Final north axis will be ", new
)
}
idf$Building$North_Axis <- new
idf
}
# apply measure
# this will create 12 models
param$apply_measure(rotate_building, degree = seq(30, 360, 30))
# apply measure with new names specified
param$apply_measure(rotate_building, degree = seq(30, 360, 30),
.names = paste0("rotate_", seq(30, 360, 30))
)
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$models`
## ------------------------------------------------
## Not run:
param$models()
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$cases`
## ------------------------------------------------
## Not run:
param$cases()
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$save`
## ------------------------------------------------
## Not run:
# save all parametric models with each model in a separate folder
param$save(tempdir())
# save all parametric models with all models in the same folder
param$save(tempdir(), separate = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$run`
## ------------------------------------------------
## Not run:
# run parametric simulations
param$run(wait = TRUE, echo = FALSE)
# run in background
param$run(wait = FALSE)
# get detailed job status by printing
print(param)
## End(Not run)
## ------------------------------------------------
## Method `ParametricJob$print`
## ------------------------------------------------
## Not run:
param$print()
Sys.sleep(10)
param$print()
## End(Not run)