A B C D E F G H I L M P R S T U W
AlphaPriorPosteriorPlot | Diagnostic plots for dirichletprocess objects |
AlphaTraceplot | Diagnostic plots for dirichletprocess objects |
BetaMixture2Create | Create a Beta mixture with zeros at the boundaries. |
BetaMixtureCreate | Create a Beta mixing distribution. |
Burn | Add burn-in to a dirichletprocess object |
ChangeObservations | Change the observations of fitted Dirichlet Process. |
ClusterComponentUpdate | Update the component of the Dirichlet process |
ClusterComponentUpdate.conjugate | Update the component of the Dirichlet process |
ClusterComponentUpdate.hierarchical | Update the component of the Dirichlet process |
ClusterLabelPredict | Predict the cluster labels of some new data. |
ClusterParameterUpdate | Update the cluster parameters of the Dirichlet process. |
ClusterTraceplot | Diagnostic plots for dirichletprocess objects |
DiagnosticPlots | Diagnostic plots for dirichletprocess objects |
DirichletHMMCreate | Create a generic Dirichlet process hidden Markov Model |
dirichletprocess | A flexible package for fitting Bayesian non-parametric models. |
DirichletProcessBeta | Dirichlet process mixture of the Beta distribution. |
DirichletProcessBeta2 | Dirichlet process mixture of Beta distributions with a Uniform Pareto base measure. |
DirichletProcessCreate | Create a Dirichlet Process object |
DirichletProcessExponential | Create a Dirichlet Mixture of Exponentials |
DirichletProcessGaussian | Create a Dirichlet Mixture of Gaussians |
DirichletProcessGaussianFixedVariance | Create a Dirichlet Mixture of the Gaussian Distribution with fixed variance. |
DirichletProcessHierarchicalBeta | Create a Hierarchical Dirichlet Mixture of Beta Distributions |
DirichletProcessHierarchicalMvnormal2 | Create a Hierarchical Dirichlet Mixture of semi-conjugate Multivariate Normal Distributions |
DirichletProcessMvnormal | Create a Dirichlet mixture of multivariate normal distributions. |
DirichletProcessMvnormal2 | Create a Dirichlet mixture of multivariate normal distributions with semi-conjugate prior. |
DirichletProcessWeibull | Create a Dirichlet Mixture of the Weibull distribution |
ExponentialMixtureCreate | Create a Exponential mixing distribution |
Fit | Fit the Dirichlet process object |
Fit.markov | Fit a Hidden Markov Dirichlet Process Model |
GaussianFixedVarianceMixtureCreate | Create a Gaussian Mixing Distribution with fixed variance. |
GaussianMixtureCreate | Create a Normal mixing distribution |
GlobalParameterUpdate | Update the parameters of the hierarchical Dirichlet process object. |
HierarchicalBetaCreate | Create a Mixing Object for a hierarchical Beta Dirichlet process object. |
HierarchicalMvnormal2Create | Create a Mixing Object for a hierarchical semi-conjugate Multivariate Normal Dirichlet process object. |
Initialise | Initialise a Dirichlet process object |
Likelihood | Mixing Distribution Likelihood |
Likelihood.beta | Mixing Distribution Likelihood |
Likelihood.beta2 | Mixing Distribution Likelihood |
Likelihood.exponential | Mixing Distribution Likelihood |
Likelihood.mvnormal | Mixing Distribution Likelihood |
Likelihood.mvnormal2 | Mixing Distribution Likelihood |
Likelihood.normal | Mixing Distribution Likelihood |
Likelihood.normalFixedVariance | Mixing Distribution Likelihood |
LikelihoodDP | The likelihood of the Dirichlet process object |
LikelihoodFunction | The Likelihood function of a Dirichlet process object. |
LikelihoodTraceplot | Diagnostic plots for dirichletprocess objects |
MixingDistribution | Create a mixing distribution object |
Mvnormal2Create | Create a multivariate normal mixing distribution with semi conjugate prior |
MvnormalCreate | Create a multivariate normal mixing distribution |
PenalisedLikelihood | Calculate the parameters that maximise the penalised likelihood. |
PenalisedLikelihood.beta | Calculate the parameters that maximise the penalised likelihood. |
PenalisedLikelihood.default | Calculate the parameters that maximise the penalised likelihood. |
piDirichlet | The Stick Breaking representation of the Dirichlet process. |
plot.dirichletprocess | Plot the Dirichlet process object |
plot_dirichletprocess_multivariate | Plot the Dirichlet process object |
plot_dirichletprocess_univariate | Plot the Dirichlet process object |
PosteriorClusters | Generate the posterior clusters of a Dirichlet Process |
PosteriorDraw | Draw from the posterior distribution |
PosteriorDraw.exponential | Draw from the posterior distribution |
PosteriorDraw.mvnormal | Draw from the posterior distribution |
PosteriorDraw.mvnormal2 | Draw from the posterior distribution |
PosteriorDraw.normal | Draw from the posterior distribution |
PosteriorDraw.normalFixedVariance | Draw from the posterior distribution |
PosteriorDraw.weibull | Draw from the posterior distribution |
PosteriorFrame | Calculate the posterior mean and quantiles from a Dirichlet process object. |
PosteriorFunction | Generate the posterior function of the Dirichlet function |
PosteriorParameters | Calculate the posterior parameters for a conjugate prior. |
PosteriorParameters.mvnormal | Calculate the posterior parameters for a conjugate prior. |
PosteriorParameters.normal | Calculate the posterior parameters for a conjugate prior. |
PosteriorParameters.normalFixedVariance | Calculate the posterior parameters for a conjugate prior. |
Predictive | Calculate how well the prior predicts the data. |
Predictive.exponential | Calculate how well the prior predicts the data. |
Predictive.mvnormal | Calculate how well the prior predicts the data. |
Predictive.normal | Calculate how well the prior predicts the data. |
Predictive.normalFixedVariance | Calculate how well the prior predicts the data. |
print.dirichletprocess | Print the Dirichlet process object |
PriorClusters | Draw prior clusters and weights from the Dirichlet process |
PriorDensity | Calculate the prior density of a mixing distribution |
PriorDensity.beta | Calculate the prior density of a mixing distribution |
PriorDensity.beta2 | Calculate the prior density of a mixing distribution |
PriorDensity.weibull | Calculate the prior density of a mixing distribution |
PriorDraw | Draw from the prior distribution |
PriorDraw.beta | Draw from the prior distribution |
PriorDraw.beta2 | Draw from the prior distribution |
PriorDraw.exponential | Draw from the prior distribution |
PriorDraw.mvnormal | Draw from the prior distribution |
PriorDraw.mvnormal2 | Draw from the prior distribution |
PriorDraw.normal | Draw from the prior distribution |
PriorDraw.normalFixedVariance | Draw from the prior distribution |
PriorDraw.weibull | Draw from the prior distribution |
PriorFunction | Generate the prior function of the Dirichlet process |
PriorParametersUpdate | Update the prior parameters of a mixing distribution |
PriorParametersUpdate.beta | Update the prior parameters of a mixing distribution |
PriorParametersUpdate.weibull | Update the prior parameters of a mixing distribution |
rats | Tumour incidences in rats |
StickBreaking | The Stick Breaking representation of the Dirichlet process. |
true_cluster_labels | Identifies the correct clusters labels, in any dimension, when cluster parameters and global parameters are matched. |
UpdateAlpha | Update the Dirichlet process concentration parameter. |
UpdateAlpha.default | Update the Dirichlet process concentration parameter. |
UpdateAlpha.hierarchical | Update the Dirichlet process concentration parameter. |
UpdateAlphaBeta | Update the alpha and beta parameter of a hidden Markov Dirichlet process model. |
WeibullMixtureCreate | Create a Weibull mixing distribution. |
weighted_function_generator | Generate a weighted function. |