Build Dirichlet Process Objects for Bayesian Modelling


[Up] [Top]

Documentation for package ‘dirichletprocess’ version 0.4.2

Help Pages

A B C D E F G H I L M P R S T U W

-- A --

AlphaPriorPosteriorPlot Diagnostic plots for dirichletprocess objects
AlphaTraceplot Diagnostic plots for dirichletprocess objects

-- B --

BetaMixture2Create Create a Beta mixture with zeros at the boundaries.
BetaMixtureCreate Create a Beta mixing distribution.
Burn Add burn-in to a dirichletprocess object

-- C --

ChangeObservations Change the observations of fitted Dirichlet Process.
ClusterComponentUpdate Update the component of the Dirichlet process
ClusterComponentUpdate.conjugate Update the component of the Dirichlet process
ClusterComponentUpdate.hierarchical Update the component of the Dirichlet process
ClusterLabelPredict Predict the cluster labels of some new data.
ClusterParameterUpdate Update the cluster parameters of the Dirichlet process.
ClusterTraceplot Diagnostic plots for dirichletprocess objects

-- D --

DiagnosticPlots Diagnostic plots for dirichletprocess objects
DirichletHMMCreate Create a generic Dirichlet process hidden Markov Model
dirichletprocess A flexible package for fitting Bayesian non-parametric models.
DirichletProcessBeta Dirichlet process mixture of the Beta distribution.
DirichletProcessBeta2 Dirichlet process mixture of Beta distributions with a Uniform Pareto base measure.
DirichletProcessCreate Create a Dirichlet Process object
DirichletProcessExponential Create a Dirichlet Mixture of Exponentials
DirichletProcessGaussian Create a Dirichlet Mixture of Gaussians
DirichletProcessGaussianFixedVariance Create a Dirichlet Mixture of the Gaussian Distribution with fixed variance.
DirichletProcessHierarchicalBeta Create a Hierarchical Dirichlet Mixture of Beta Distributions
DirichletProcessHierarchicalMvnormal2 Create a Hierarchical Dirichlet Mixture of semi-conjugate Multivariate Normal Distributions
DirichletProcessMvnormal Create a Dirichlet mixture of multivariate normal distributions.
DirichletProcessMvnormal2 Create a Dirichlet mixture of multivariate normal distributions with semi-conjugate prior.
DirichletProcessWeibull Create a Dirichlet Mixture of the Weibull distribution

-- E --

ExponentialMixtureCreate Create a Exponential mixing distribution

-- F --

Fit Fit the Dirichlet process object
Fit.markov Fit a Hidden Markov Dirichlet Process Model

-- G --

GaussianFixedVarianceMixtureCreate Create a Gaussian Mixing Distribution with fixed variance.
GaussianMixtureCreate Create a Normal mixing distribution
GlobalParameterUpdate Update the parameters of the hierarchical Dirichlet process object.

-- H --

HierarchicalBetaCreate Create a Mixing Object for a hierarchical Beta Dirichlet process object.
HierarchicalMvnormal2Create Create a Mixing Object for a hierarchical semi-conjugate Multivariate Normal Dirichlet process object.

-- I --

Initialise Initialise a Dirichlet process object

-- L --

Likelihood Mixing Distribution Likelihood
Likelihood.beta Mixing Distribution Likelihood
Likelihood.beta2 Mixing Distribution Likelihood
Likelihood.exponential Mixing Distribution Likelihood
Likelihood.mvnormal Mixing Distribution Likelihood
Likelihood.mvnormal2 Mixing Distribution Likelihood
Likelihood.normal Mixing Distribution Likelihood
Likelihood.normalFixedVariance Mixing Distribution Likelihood
LikelihoodDP The likelihood of the Dirichlet process object
LikelihoodFunction The Likelihood function of a Dirichlet process object.
LikelihoodTraceplot Diagnostic plots for dirichletprocess objects

-- M --

MixingDistribution Create a mixing distribution object
Mvnormal2Create Create a multivariate normal mixing distribution with semi conjugate prior
MvnormalCreate Create a multivariate normal mixing distribution

-- P --

PenalisedLikelihood Calculate the parameters that maximise the penalised likelihood.
PenalisedLikelihood.beta Calculate the parameters that maximise the penalised likelihood.
PenalisedLikelihood.default Calculate the parameters that maximise the penalised likelihood.
piDirichlet The Stick Breaking representation of the Dirichlet process.
plot.dirichletprocess Plot the Dirichlet process object
plot_dirichletprocess_multivariate Plot the Dirichlet process object
plot_dirichletprocess_univariate Plot the Dirichlet process object
PosteriorClusters Generate the posterior clusters of a Dirichlet Process
PosteriorDraw Draw from the posterior distribution
PosteriorDraw.exponential Draw from the posterior distribution
PosteriorDraw.mvnormal Draw from the posterior distribution
PosteriorDraw.mvnormal2 Draw from the posterior distribution
PosteriorDraw.normal Draw from the posterior distribution
PosteriorDraw.normalFixedVariance Draw from the posterior distribution
PosteriorDraw.weibull Draw from the posterior distribution
PosteriorFrame Calculate the posterior mean and quantiles from a Dirichlet process object.
PosteriorFunction Generate the posterior function of the Dirichlet function
PosteriorParameters Calculate the posterior parameters for a conjugate prior.
PosteriorParameters.mvnormal Calculate the posterior parameters for a conjugate prior.
PosteriorParameters.normal Calculate the posterior parameters for a conjugate prior.
PosteriorParameters.normalFixedVariance Calculate the posterior parameters for a conjugate prior.
Predictive Calculate how well the prior predicts the data.
Predictive.exponential Calculate how well the prior predicts the data.
Predictive.mvnormal Calculate how well the prior predicts the data.
Predictive.normal Calculate how well the prior predicts the data.
Predictive.normalFixedVariance Calculate how well the prior predicts the data.
print.dirichletprocess Print the Dirichlet process object
PriorClusters Draw prior clusters and weights from the Dirichlet process
PriorDensity Calculate the prior density of a mixing distribution
PriorDensity.beta Calculate the prior density of a mixing distribution
PriorDensity.beta2 Calculate the prior density of a mixing distribution
PriorDensity.weibull Calculate the prior density of a mixing distribution
PriorDraw Draw from the prior distribution
PriorDraw.beta Draw from the prior distribution
PriorDraw.beta2 Draw from the prior distribution
PriorDraw.exponential Draw from the prior distribution
PriorDraw.mvnormal Draw from the prior distribution
PriorDraw.mvnormal2 Draw from the prior distribution
PriorDraw.normal Draw from the prior distribution
PriorDraw.normalFixedVariance Draw from the prior distribution
PriorDraw.weibull Draw from the prior distribution
PriorFunction Generate the prior function of the Dirichlet process
PriorParametersUpdate Update the prior parameters of a mixing distribution
PriorParametersUpdate.beta Update the prior parameters of a mixing distribution
PriorParametersUpdate.weibull Update the prior parameters of a mixing distribution

-- R --

rats Tumour incidences in rats

-- S --

StickBreaking The Stick Breaking representation of the Dirichlet process.

-- T --

true_cluster_labels Identifies the correct clusters labels, in any dimension, when cluster parameters and global parameters are matched.

-- U --

UpdateAlpha Update the Dirichlet process concentration parameter.
UpdateAlpha.default Update the Dirichlet process concentration parameter.
UpdateAlpha.hierarchical Update the Dirichlet process concentration parameter.
UpdateAlphaBeta Update the alpha and beta parameter of a hidden Markov Dirichlet process model.

-- W --

WeibullMixtureCreate Create a Weibull mixing distribution.
weighted_function_generator Generate a weighted function.