DirichletProcessWeibull {dirichletprocess} | R Documentation |
Create a Dirichlet Mixture of the Weibull distribution
Description
The likelihood is parameterised as \mathrm{Weibull} (y | a, b) = \frac{a}{b} y ^{a-1} \exp \left( - \frac{x^a}{b} \right)
.
The base measure is a Uniform Inverse Gamma Distribution.
G_0 (a, b | \phi, \alpha _0 , \beta _0) = U(a | 0, \phi ) \mathrm{Inv-Gamma} ( b | \alpha _0, \beta _0)
\phi \sim \mathrm{Pareto}(x_m , k)
\beta \sim \mathrm{Gamma} (\alpha _0 , \beta _0)
This is a semi-conjugate distribution. The cluster parameter a is updated using the Metropolis Hastings algorithm an analytical posterior exists for b.
Usage
DirichletProcessWeibull(
y,
g0Priors,
alphaPriors = c(2, 4),
mhStepSize = c(1, 1),
hyperPriorParameters = c(6, 2, 1, 0.5),
verbose = FALSE,
mhDraws = 250
)
Arguments
y |
Data. |
g0Priors |
Base Distribution Priors. |
alphaPriors |
Prior for the concentration parameter. |
mhStepSize |
Step size for the new parameter in the Metropolis Hastings algorithm. |
hyperPriorParameters |
Hyper prior parameters. |
verbose |
Set the level of screen output. |
mhDraws |
Number of Metropolis-Hastings samples to perform for each cluster update. |
Value
Dirichlet process object
References
Kottas, A. (2006). Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. Journal of Statistical Planning and Inference, 136(3), 578-596.