StickBreaking {dirichletprocess}R Documentation

The Stick Breaking representation of the Dirichlet process.

Description

A Dirichlet process can be represented using a stick breaking construction

G=i=1npiiδθiG = \sum _{i=1} ^n pi _i \delta _{\theta _i}

, where πk=βkk=1n1(1βk)\pi _k = \beta _k \prod _{k=1} ^{n-1} (1- \beta _k ) are the stick breaking weights. The atoms δθi\delta _{\theta _i} are drawn from G0G_0 the base measure of the Dirichlet Process. The βkBeta(1,α)\beta _k \sim \mathrm{Beta} (1, \alpha). In theory nn should be infinite, but we chose some value of NN to truncate the series. For more details see reference.

Usage

StickBreaking(alpha, N)

piDirichlet(betas)

Arguments

alpha

Concentration parameter of the Dirichlet Process.

N

Truncation value.

betas

Draws from the Beta distribution.

Value

Vector of stick breaking probabilities.

Functions

References

Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161-173.


[Package dirichletprocess version 0.4.2 Index]