AUTO_VI | AUTO_VI class environment |
auto_vi | AUTO_VI class environment |
AUTO_VI$..init.. | Initialization method |
AUTO_VI$..str.. | String representation of the object |
AUTO_VI$auxiliary | Compute auxiliary variables for the keras model |
AUTO_VI$boot_vss | Predict visual signal strength for bootstrapped residual plots |
AUTO_VI$check | Conduct a auto visual inference check with a computer vision model |
AUTO_VI$check_result | List of diagnostic results |
AUTO_VI$feature_pca | Conduct principal component analysis for features extracted from keras model |
AUTO_VI$feature_pca_plot | Draw a summary Plot for principal component analysis conducted on extracted features |
AUTO_VI$get_data | Get data out of a model object |
AUTO_VI$get_fitted_and_resid | Get fitted values and residuals out of a model object |
AUTO_VI$likelihood_ratio | Compute the likelihood ratio using the simulated result |
AUTO_VI$lineup_check | Conduct a auto visual inference lineup check with a computer vision model |
AUTO_VI$null_method | Get null residuals from a fitted model |
AUTO_VI$null_vss | Simulate null plots and predict the visual signal strength |
AUTO_VI$plot_resid | Draw a standard residual plot |
AUTO_VI$p_value | Compute the p-value based on the check result |
AUTO_VI$rotate_resid | Get rotated residuals from a fitted linear model |
AUTO_VI$select_feature | Select features from the check result |
AUTO_VI$summary_density_plot | Draw a summary density plot for the result |
AUTO_VI$summary_plot | Draw a summary plot for the result |
AUTO_VI$summary_rank_plot | Draw a summary rank plot for the result |
AUTO_VI$vss | Predict the visual signal strength |
check_python_library_available | Check python library availability |
get_keras_model | Download and load the keras model |
KERAS_WRAPPER | KERAS_WRAPPER class environment |
keras_wrapper | KERAS_WRAPPER class environment |
KERAS_WRAPPER$..init.. | Initialization method |
KERAS_WRAPPER$..str.. | String representation of the object |
KERAS_WRAPPER$get_input_height | Get keras model input image height |
KERAS_WRAPPER$get_input_width | Get keras model input image width |
KERAS_WRAPPER$image_to_array | Load an image as numpy array |
KERAS_WRAPPER$list_layer_name | List all layer names |
KERAS_WRAPPER$predict | Predict visual signal strength |
list_keras_model | List all available pre-trained computer vision models |
remove_plot | Remove a plot |
save_plot | Save a plot |