| AUTO_VI$check {autovi} | R Documentation | 
Conduct a auto visual inference check with a computer vision model
Description
This function conducts a visual inference
check with a computer vision model. The result will be stored in
self$check_result.
Usage
AUTO_VI$check( null_draws = 100L, boot_draws = 100L, fitted_model = self$fitted_model, keras_model = self$keras_model, null_method = self$null_method, p_value_type = "quantile", data = self$get_data(), node_index = self$node_index, keep_data = FALSE, keep_plot = FALSE, extract_feature_from_layer = NULL )
Arguments
null_draws | 
 Integer. Number of simulation draws for
  | 
boot_draws | 
 Integer. Number of simulation draws for
  | 
fitted_model | 
 Model. A model object, e.g.   | 
keras_model | 
 Keras model. A trained computer vision model.  | 
null_method | 
 Function. A method to simulate residuals from the null
hypothesis distribution. For   | 
p_value_type | 
 Character. Either "quantile" or "lineup". See
also   | 
data | 
 Data frame. The data used to fit the model.
See also   | 
node_index | 
 Integer. An index indicating which node of the output layer contains the visual signal strength. This is particularly useful when the keras model has more than one output nodes.  | 
keep_data | 
 Boolean. Whether to keep the simulated data.  | 
keep_plot | 
 Boolean. Whether to keep the simulated plots.  | 
extract_feature_from_layer | 
 Character/Integer. A layer name or an integer layer index for extracting features from a layer.  | 
Value
Return the object itself.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
  myvi <- auto_vi(lm(dist ~ speed, data = cars), keras_model)
  myvi$check()
  myvi
}