KERAS_WRAPPER$predict {autovi} | R Documentation |
Predict visual signal strength
Description
This function predicts the visual signal strength using the provided keras model, input array and optional auxiliary input array.
Usage
KERAS_WRAPPER$predict( input_array, auxiliary = NULL, keras_model = self$keras_model, node_index = self$node_index, extract_featrue_from_layer = NULL )
Arguments
input_array |
Array/Numpy array. An input array, usually of the shape (batch_size, height, width, channels). |
auxiliary |
Array/Data frame. An auxiliary input array of the shape (batch_size, number_of_auxiliary_inputs). This is only needed if the keras model takes multiple inputs. |
keras_model |
Keras model. A trained computer vision model. |
node_index |
Integer. An index indicating which node of the output layer contains the visual signal strength. This is particularly useful when the keras model has more than one output nodes. |
extract_feature_from_layer |
Character/Integer. A layer name or an integer layer index for extracting features from a layer. |
Value
A tibble. The first column is vss
which is the prediction, the
rest of the columns are features extracted from a layer.
Examples
keras_model <- try(get_keras_model("vss_phn_32"))
if (!inherits(keras_model, "try-error")) {
wrapper <- keras_wrapper(keras_model)
# Provide one 32 * 32 RGB image and one vector of length 5 as input
wrapper$predict(input_array = array(255, dim = c(1, 32, 32, 3)),
auxiliary = matrix(1, ncol = 5))
}