Median.test {agricolae} | R Documentation |
Median test. Multiple comparisons
Description
A nonparametric test for several independent samples. The median test is designed to examine whether several samples came from populations having the same median.
Usage
Median.test(y,trt,alpha=0.05,correct=TRUE,simulate.p.value = FALSE, group = TRUE,
main = NULL,console=TRUE)
Arguments
y |
Variable response |
trt |
Treatments |
alpha |
error type I |
correct |
a logical indicating whether to apply continuity correction when computing the test statistic for 2 groups. The correction will not be bigger than the differences themselves. No correction is done if simulate.p.value = TRUE. |
simulate.p.value |
a logical indicating whether to compute p-values by Monte Carlo simulation |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
The data consist of k samples of possibly unequal sample size.
Greater: is the number of values that exceed the median of all data and
LessEqual: is the number less than or equal to the median of all data.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
medians |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
# example 1
data(corn)
out<-with(corn,Median.test(observation,method,console=FALSE))
z<-bar.err(out$medians,variation = "range",ylim=c(0,120),
space=2,border=4,col=3,density=10,angle=45)
# example 2
out<-with(corn,Median.test(observation,method,console=FALSE,group=FALSE))
print(out$comparison)