LSD.test {agricolae} | R Documentation |
Multiple comparisons, "Least significant difference" and Adjust P-values
Description
Multiple comparisons of treatments by means of LSD and a grouping of treatments. The level by alpha default is 0.05. Returns p-values adjusted using one of several methods
Usage
LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degrees of freedom of the experimental error |
MSerror |
Means square error of the experimental |
alpha |
Level of risk for the test |
p.adj |
Method for adjusting p values (see p.adjust) |
group |
TRUE or FALSE |
main |
title of the study |
console |
logical, print output |
Details
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj ="none" is t-student.
It is necessary first makes a analysis of variance.
if model=y, then to apply the instruction:
LSD.test(model, "trt", alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp178.
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- LSD.test(model,"virus", p.adj="bonferroni")
#stargraph
# Variation range: max and min
plot(out)
#endgraph
# Old version LSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,LSD.test(yield,virus,df,MSerror))
#stargraph
# Variation interquartil range: Q75 and Q25
plot(out,variation="IQR")
#endgraph
out<-LSD.test(model,"virus",p.adj="hommel",console=TRUE)
plot(out,variation="SD") # variation standard deviation