Adaptive Gauss Hermite Quadrature for Bayesian Inference


[Up] [Top]

Documentation for package ‘aghq’ version 0.4.1

Help Pages

adaptive_nested_quadrature Nested, sparse Gaussian quadrature in AGHQ
aghq Adaptive Gauss-Hermite Quadrature
compute_moment Compute moments
compute_moment.aghq Compute moments
compute_moment.default Compute moments
compute_moment.list Compute moments
compute_pdf_and_cdf Density and Cumulative Distribution Function
compute_pdf_and_cdf.aghq Density and Cumulative Distribution Function
compute_pdf_and_cdf.default Density and Cumulative Distribution Function
compute_pdf_and_cdf.list Density and Cumulative Distribution Function
compute_quantiles Quantiles
compute_quantiles.aghq Quantiles
compute_quantiles.default Quantiles
compute_quantiles.list Quantiles
correct_marginals Correct the posterior marginals of a fitted aghq object
default_control Default control arguments for 'aghq::aghq()'.
default_control_marglaplace Default control arguments for 'aghq::marginal_laplace()'.
default_control_tmb Default control arguments for 'aghq::marginal_laplace_tmb()'.
default_transformation Default transformation
gcdata Globular Clusters data for Milky Way mass estimation
gcdatalist Transformed Globular Clusters data
get_hessian Obtain the Hessian from an aghq object
get_log_normconst Obtain the log-normalizing constant from a fitted quadrature object
get_log_normconst.aghq Obtain the log-normalizing constant from a fitted quadrature object
get_log_normconst.default Obtain the log-normalizing constant from a fitted quadrature object
get_log_normconst.laplace Obtain the log-normalizing constant from a fitted quadrature object
get_log_normconst.marginallaplace Obtain the log-normalizing constant from a fitted quadrature object
get_log_normconst.numeric Obtain the log-normalizing constant from a fitted quadrature object
get_mode Obtain the mode from an aghq object
get_nodesandweights Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.aghq Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.data.frame Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.default Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.laplace Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.list Obtain the nodes and weights table from a fitted quadrature object
get_nodesandweights.marginallaplace Obtain the nodes and weights table from a fitted quadrature object
get_numquadpoints Obtain the number of quadrature nodes used from an aghq object
get_opt_results Obtain the optimization results from an aghq object
get_opt_results.aghq Obtain the optimization results from an aghq object
get_opt_results.marginallaplace Obtain the optimization results from an aghq object
get_param_dim Obtain the parameter dimension from an aghq object
get_param_dim.aghq Obtain the parameter dimension from an aghq object
get_quadtable Nested, sparse Gaussian quadrature in AGHQ
get_shift Compute numeric moments
interpolate_marginal_posterior Interpolate the Marginal Posterior
laplace_approximation Laplace Approximation
make_moment_function Moments of Positive Functions
make_moment_function.aghqmoment Moments of Positive Functions
make_moment_function.aghqtrans Moments of Positive Functions
make_moment_function.character Moments of Positive Functions
make_moment_function.default Moments of Positive Functions
make_moment_function.function Moments of Positive Functions
make_moment_function.list Moments of Positive Functions
make_numeric_moment_function Compute numeric moments
make_transformation Marginal Parameter Transformations
make_transformation.aghqtrans Marginal Parameter Transformations
make_transformation.default Marginal Parameter Transformations
make_transformation.list Marginal Parameter Transformations
marginal_laplace Marginal Laplace approximation
marginal_laplace_tmb AGHQ-normalized marginal Laplace approximation from a TMB function template
marginal_posterior Marginal Posteriors
marginal_posterior.aghq Marginal Posteriors
marginal_posterior.list Marginal Posteriors
nested_quadrature Nested, sparse Gaussian quadrature in AGHQ
normalize_logpost Normalize the joint posterior using AGHQ
optimize_theta Obtain function information necessary for performing quadrature
plot.aghq Plot method for AGHQ objects
print.aghq Print method for AGHQ objects
print.aghqsummary Print method for AGHQ summary objects
print.laplace Print method for AGHQ objects
print.laplacesummary Print method for laplacesummary objects
print.marginallaplacesummary Summary statistics for models using marginal Laplace approximations
sample_marginal Exact independent samples from an approximate posterior distribution
sample_marginal.aghq Exact independent samples from an approximate posterior distribution
sample_marginal.marginallaplace Exact independent samples from an approximate posterior distribution
summary.aghq Summary statistics computed using AGHQ
summary.laplace Summary method for Laplace Approximation objects
summary.marginallaplace Summary statistics for models using marginal Laplace approximations
validate_control Validate a control list
validate_moment Validate a moment function object
validate_moment.aghqmoment Validate a moment function object
validate_moment.character Validate a moment function object
validate_moment.default Validate a moment function object
validate_moment.function Validate a moment function object
validate_moment.list Validate a moment function object
validate_transformation Validate a transformation object
validate_transformation.aghqtrans Validate a transformation object
validate_transformation.default Validate a transformation object
validate_transformation.list Validate a transformation object