Adaptive Gauss Hermite Quadrature for Bayesian Inference


[Up] [Top]

Documentation for package ‘aghq’ version 0.2.0

Help Pages

aghq Adaptive Gauss-Hermite Quadrature
compute_moment Compute moments
compute_moment.aghq Compute moments
compute_moment.default Compute moments
compute_pdf_and_cdf Density and Cumulative Distribution Function
compute_pdf_and_cdf.aghq Density and Cumulative Distribution Function
compute_pdf_and_cdf.default Density and Cumulative Distribution Function
compute_pdf_and_cdf.list Density and Cumulative Distribution Function
compute_quantiles Quantiles
compute_quantiles.aghq Quantiles
compute_quantiles.default Quantiles
compute_quantiles.list Quantiles
default_control Default control arguments for 'aghq::aghq()'.
default_control_marglaplace Default control arguments for 'aghq::marginal_laplace()'.
default_control_tmb Default control arguments for 'aghq::marginal_laplace()'.
gcdata Globular Clusters data for Milky Way mass estimation
gcdatalist Transformed Globular Clusters data
interpolate_marginal_posterior Interpolate the Marginal Posterior
laplace_approximation Laplace Approximation
marginal_laplace Marginal Laplace approximation
marginal_laplace_tmb AGHQ-normalized marginal Laplace approximation from a TMB function template
marginal_posterior Marginal Posteriors
normalize_logpost Normalize the joint posterior using AGHQ
optimize_theta Obtain function information necessary for performing quadrature
plot.aghq Plot method for AGHQ objects
print.aghq Print method for AGHQ objects
print.aghqsummary Print method for AGHQ summary objects
print.laplace Print method for AGHQ objects
print.laplacesummary Print method for laplacesummary objects
sample_marginal Exact independent samples from an approximate posterior distribution
sample_marginal.aghq Exact independent samples from an approximate posterior distribution
sample_marginal.marginallaplace Exact independent samples from an approximate posterior distribution
summary.aghq Summary statistics computed using AGHQ
summary.laplace Summary method for Laplace Approximation objects