compute_pdf_and_cdf {aghq} | R Documentation |
Density and Cumulative Distribution Function
Description
Compute the density and cumulative distribution function of the approximate posterior. The density is approximated on a find grid using a polynomial interpolant. The CDF can't be computed exactly (if it could, you wouldn't be using quadrature!), so a fine grid is laid down and the CDF is approximated at each grid point using a simpler integration rule and a polynomial interpolant. This method tends to work well, but won't always.
Usage
compute_pdf_and_cdf(obj, ...)
## Default S3 method:
compute_pdf_and_cdf(
obj,
transformation = default_transformation(),
finegrid = NULL,
interpolation = "auto",
...
)
## S3 method for class 'list'
compute_pdf_and_cdf(obj, transformation = default_transformation(), ...)
## S3 method for class 'aghq'
compute_pdf_and_cdf(obj, transformation = obj$transformation, ...)
Arguments
obj |
Either the output of |
... |
Used to pass additional arguments. |
transformation |
Optional. Calculate pdf/cdf for a transformation of the parameter
whose posterior was normalized using adaptive quadrature.
|
finegrid |
Optional, a grid of values on which to compute the CDF. The default makes
use of the values in |
interpolation |
Which method to use for interpolating the marginal posterior, |
Value
A tbl_df/tbl/data.frame with columns theta
, pdf
and cdf
corresponding
to the value of the parameter and its estimated PDF and CDF at that value.
See Also
Other summaries:
compute_quantiles()
,
interpolate_marginal_posterior()
,
marginal_posterior()
Examples
logfteta2d <- function(eta,y) {
# eta is now (eta1,eta2)
# y is now (y1,y2)
n <- length(y)
n1 <- ceiling(n/2)
n2 <- floor(n/2)
y1 <- y[1:n1]
y2 <- y[(n1+1):(n1+n2)]
eta1 <- eta[1]
eta2 <- eta[2]
sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
fn = objfunc2d,
gr = function(x) numDeriv::grad(objfunc2d,x),
he = function(x) numDeriv::hessian(objfunc2d,x)
)
opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5))
margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1
thepdfandcdf <- compute_pdf_and_cdf(margpost)
with(thepdfandcdf,{
plot(pdf~theta,type='l')
plot(cdf~theta,type='l')
})