plot.aghq {aghq}R Documentation

Plot method for AGHQ objects

Description

Plot the marginal pdf and cdf of the transformed parameter from an aghq object.

Usage

## S3 method for class 'aghq'
plot(x, ...)

Arguments

x

The return value of aghq::aghq. Plots are created for the marginal pdf and cdf of x$transformation$fromtheta(theta).

...

not used.

Value

Silently plots.

See Also

Other quadrature: aghq(), get_hessian(), get_log_normconst(), get_mode(), get_nodesandweights(), get_numquadpoints(), get_opt_results(), get_param_dim(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), nested_quadrature(), normalize_logpost(), optimize_theta(), print.aghqsummary(), print.aghq(), print.laplacesummary(), print.laplace(), print.marginallaplacesummary(), summary.aghq(), summary.laplace(), summary.marginallaplace()

Other quadrature: aghq(), get_hessian(), get_log_normconst(), get_mode(), get_nodesandweights(), get_numquadpoints(), get_opt_results(), get_param_dim(), laplace_approximation(), marginal_laplace_tmb(), marginal_laplace(), nested_quadrature(), normalize_logpost(), optimize_theta(), print.aghqsummary(), print.aghq(), print.laplacesummary(), print.laplace(), print.marginallaplacesummary(), summary.aghq(), summary.laplace(), summary.marginallaplace()

Examples


logfteta2d <- function(eta,y) {
  # eta is now (eta1,eta2)
  # y is now (y1,y2)
  n <- length(y)
  n1 <- ceiling(n/2)
  n2 <- floor(n/2)
  y1 <- y[1:n1]
  y2 <- y[(n1+1):(n1+n2)]
  eta1 <- eta[1]
  eta2 <- eta[2]
  sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 +
    sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2
}
set.seed(84343124)
n1 <- 5
n2 <- 5
n <- n1+n2
y1 <- rpois(n1,5)
y2 <- rpois(n2,5)
objfunc2d <- function(x) logfteta2d(x,c(y1,y2))
funlist2d <- list(
  fn = objfunc2d,
  gr = function(x) numDeriv::grad(objfunc2d,x),
  he = function(x) numDeriv::hessian(objfunc2d,x)
)

thequadrature <- aghq(funlist2d,3,c(0,0))
plot(thequadrature)


[Package aghq version 0.4.1 Index]