Bayesian Probit Choice Modeling


[Up] [Top]

Documentation for package ‘RprobitB’ version 1.1.4

Help Pages

as_cov_names Re-label alternative specific covariates
check_form Check model formula
check_prior Check prior parameters
choice_probabilities Compute choice probabilities
classification Classify deciders preference-based
coef.RprobitB_fit Extract model effects
compute_p_si Compute choice probabilities at posterior samples
cov_mix Extract estimated covariance matrix of mixing distribution
create_lagged_cov Create lagged choice covariates
fit_model Fit probit model to choice data
get_cov Extract covariates of choice occasion
mml Approximate marginal model likelihood
model_selection Compare fitted models
npar Extract number of model parameters
npar.RprobitB_fit Extract number of model parameters
overview_effects Print effect overview
plot.RprobitB_data Visualize choice data
plot.RprobitB_fit Visualize fitted probit model
plot_roc Plot ROC curve
point_estimates Compute point estimates
predict.RprobitB_fit Predict choices
pred_acc Compute prediction accuracy
prepare_data Prepare choice data for estimation
RprobitB_parameter Define probit model parameter
R_hat Compute Gelman-Rubin statistic
simulate_choices Simulate choice data
train_choice Stated Preferences for Train Traveling
train_test Split choice data in train and test subset
transform.RprobitB_fit Transform fitted probit model
update.RprobitB_fit Update and re-fit probit model