fit_model {RprobitB} | R Documentation |
Fit probit model to choice data
Description
This function performs Markov chain Monte Carlo simulation for fitting different types of probit models (binary, multivariate, mixed, latent class, ordered, ranked) to discrete choice data.
Usage
fit_model(
data,
scale = "Sigma_1,1 := 1",
R = 1000,
B = R/2,
Q = 1,
print_progress = getOption("RprobitB_progress"),
prior = NULL,
latent_classes = NULL,
seed = NULL,
fixed_parameter = list()
)
Arguments
data |
An object of class |
scale |
A character which determines the utility scale. It is of the form
|
R |
The number of iterations of the Gibbs sampler. |
B |
The length of the burn-in period, i.e. a non-negative number of samples to be discarded. |
Q |
The thinning factor for the Gibbs samples, i.e. only every |
print_progress |
A boolean, determining whether to print the Gibbs sampler progress and the estimated remaining computation time. |
prior |
A named list of parameters for the prior distributions. See the documentation
of |
latent_classes |
Either
|
seed |
Set a seed for the Gibbs sampling. |
fixed_parameter |
Optionally specify a named list with fixed parameter values for |
Details
See the vignette on model fitting for more details.
Value
An object of class RprobitB_fit
.
See Also
-
prepare_data()
andsimulate_choices()
for building anRprobitB_data
object -
update()
for estimating nested models -
transform()
for transforming a fitted model
Examples
data <- simulate_choices(
form = choice ~ var | 0, N = 100, T = 10, J = 3, seed = 1
)
model <- fit_model(data = data, R = 1000, seed = 1)
summary(model)