Prediction with Less Overfitting and Robust to Noise


[Up] [Top]

Documentation for package ‘PLORN’ version 0.1.1

Help Pages

p.clean Clean data by eliminating predictors with many missing values
p.opt Estimate the optimal number of predictors to construct PLORN model
p.pca Visualize predictors using principal coordinate analysis
p.rank Visualize R-squared value distribution in predictor-environment interaction
p.sort Sort and truncate predictors according to the strength of predictor-environment interaction
Pinus Transcriptomes of Pinus roots under a Temperature Gradient
plorn Construct and apply the PLORN model with your own data