p.pca {PLORN} | R Documentation |
Visualize predictors using principal coordinate analysis
Description
Visualize predictors using principal coordinate analysis
Usage
p.pca(x, y, method = "linear", lower.thr = 0, n.pred = ncol(x), size = 1)
Arguments
x |
A data matrix (row: samples, col: predictors). |
y |
A vector of an environment in which the samples were collected. |
method |
A string to specify the method of regression for calculating R-squared values. "linear" (default), "quadratic" or "cubic" regression model can be specified. |
lower.thr |
The lower threshold of R-squared value to be indicated in a PCA plot (default: 0). |
n.pred |
The number of candidate predictors for PLORN model to be indicated in a PCA plot (default: ncol(x)). |
size |
The size of symbols in a PCA plot (default: 1). |
Value
A PCA plot
Author(s)
Takahiko Koizumi
Examples
data(Pinus)
train <- p.clean(Pinus$train)
target <- Pinus$target
p.pca(train, target)
[Package PLORN version 0.1.1 Index]