p.rank {PLORN} | R Documentation |
Visualize R-squared value distribution in predictor-environment interaction
Description
Visualize R-squared value distribution in predictor-environment interaction
Usage
p.rank(
x,
y,
method = "linear",
lower.thr = 0,
n.pred = ncol(x),
upper.xlim = ncol(x)
)
Arguments
x |
A data matrix (row: samples, col: predictors). |
y |
A vector of an environment in which the samples were collected. |
method |
A string to specify the method of regression for calculating R-squared values. "linear" (default), "quadratic" or "cubic" regression model can be specified. |
lower.thr |
The lower threshold of R-squared value to be included in PLORN model (default: 0). |
n.pred |
The number of predictors to be included in PLORN model (default: ncol(x)). |
upper.xlim |
The upper limitation of x axis (i.e., the number of predictors) in the resulted figure (default: ncol(x)). |
Value
A rank order plot
Author(s)
Takahiko Koizumi
Examples
data(Pinus)
train <- p.clean(Pinus$train)
target <- Pinus$target
train <- p.sort(train, target)
p.rank(train, target)
[Package PLORN version 0.1.1 Index]