Accuracy |
accuracy of oblique decision random forest |
as.party.ODT |
'ODT' as 'party' |
best.cut.node |
find best splitting variable and node |
defaults |
Default values passed to RotMat* |
ODRF |
Classification and Regression using Oblique Decision Random Forest |
ODRF.default |
Classification and Regression using Oblique Decision Random Forest |
ODRF.formula |
Classification and Regression using Oblique Decision Random Forest |
ODT |
Classification and Regression with Oblique Decision Tree |
ODT.default |
Classification and Regression with Oblique Decision Tree |
ODT.formula |
Classification and Regression with Oblique Decision Tree |
online.ODRF |
using new training data to update an existing 'ODRF'. |
online.ODT |
using new training data to update an existing 'ODT'. |
plot.Accuracy |
plot method for 'Accuracy' objects |
plot.ODT |
to plot an oblique decision tree |
plot.prune.ODT |
to plot pruned oblique decision tree |
plot.VarImp |
Variable Importance Plot |
plot_ODT_depth |
plot oblique decision tree depth |
PPO |
Projection Pursuit Optimization |
predict.ODRF |
predict based on an ODRF object |
predict.ODT |
making predict based on ODT objects |
print.ODRF |
print ODRF |
print.ODT |
print ODT result |
prune.ODRF |
Pruning of class 'ODRF'. |
prune.ODT |
pruning of class 'ODT' |
RandRot |
Samples a p x p uniformly random rotation matrix |
RotMatMake |
Create rotation matrix used to determine the linear combination of features. |
RotMatPPO |
Create a Projection Matrix: RotMatPPO |
RotMatRand |
Random Rotation Matrix |
RotMatRF |
Create a Projection Matrix: Random Forest (RF) |
VarImp |
Extract variable importance measure |