Oblique Decision Random Forest for Classification and Regression


[Up] [Top]

Documentation for package ‘ODRF’ version 0.0.4

Help Pages

Accuracy accuracy of oblique decision random forest
as.party.ODT 'ODT' as 'party'
best.cut.node find best splitting variable and node
defaults Default values passed to RotMat*
ODRF Classification and Regression using Oblique Decision Random Forest
ODRF.default Classification and Regression using Oblique Decision Random Forest
ODRF.formula Classification and Regression using Oblique Decision Random Forest
ODT Classification and Regression with Oblique Decision Tree
ODT.default Classification and Regression with Oblique Decision Tree
ODT.formula Classification and Regression with Oblique Decision Tree
online.ODRF using new training data to update an existing 'ODRF'.
online.ODT using new training data to update an existing 'ODT'.
plot.Accuracy plot method for 'Accuracy' objects
plot.ODT to plot an oblique decision tree
plot.prune.ODT to plot pruned oblique decision tree
plot.VarImp Variable Importance Plot
plot_ODT_depth plot oblique decision tree depth
PPO Projection Pursuit Optimization
predict.ODRF predict based on an ODRF object
predict.ODT making predict based on ODT objects
print.ODRF print ODRF
print.ODT print ODT result
prune.ODRF Pruning of class 'ODRF'.
prune.ODT pruning of class 'ODT'
RandRot Samples a p x p uniformly random rotation matrix
RotMatMake Create rotation matrix used to determine the linear combination of features.
RotMatPPO Create a Projection Matrix: RotMatPPO
RotMatRand Random Rotation Matrix
RotMatRF Create a Projection Matrix: Random Forest (RF)
VarImp Extract variable importance measure