| RotMatRand {ODRF} | R Documentation | 
Random Rotation Matrix
Description
Generate rotation matrices by different distributions, and it comes from the library rerf.
Usage
RotMatRand(
  dimX,
  randDist = "Binary",
  numProj = ceiling(sqrt(dimX)),
  dimProj = "Rand",
  sparsity = ifelse(dimX >= 10, 3/dimX, 1/dimX),
  prob = 0.5,
  lambda = 1,
  catLabel = NULL,
  ...
)
Arguments
dimX | 
 The number of dimensions.  | 
randDist | 
 The probability distribution of the random projection direction, including "Binary":   | 
numProj | 
 The number of projection directions (default ceiling(sqrt(  | 
dimProj | 
 Number of variables to be projected, default dimProj="Rand": random from 1 to   | 
sparsity | 
 A real number in   | 
prob | 
 A probability in   | 
lambda | 
 Parameter of the Poisson distribution (default 1).  | 
catLabel | 
 A category labels of class   | 
... | 
 Used to handle superfluous arguments passed in using paramList.  | 
Value
A random matrix to use in running ODT.
Variable: Variables to be projected.
Number: Number of projections.
Coefficient: Coefficients of the projection matrix.
References
Tomita, T. M., Browne, J., Shen, C., Chung, J., Patsolic, J. L., Falk, B., ... & Vogelstein, J. T. (2020). Sparse projection oblique randomer forests. Journal of machine learning research, 21(104).
See Also
Examples
set.seed(1)
paramList <- list(dimX = 8, numProj = 3, sparsity = 0.25, prob = 0.5)
(RotMat <- do.call(RotMatRand, paramList))
paramList <- list(dimX = 8, numProj = 3, sparsity = "pois")
(RotMat <- do.call(RotMatRand, paramList))
paramList <- list(dimX = 8, randDist = "Norm", dimProj = 5)
(RotMat <- do.call(RotMatRand, paramList))