ODT {ODRF} | R Documentation |
Classification and Regression with Oblique Decision Tree
Description
Classification and regression using an oblique decision tree (ODT) in which each node is split by a linear combination of predictors. Different methods are provided for selecting the linear combinations, while the splitting values are chosen by one of three criteria.
Usage
ODT(X, ...)
## S3 method for class 'formula'
ODT(
formula,
data = NULL,
split = "auto",
lambda = "log",
NodeRotateFun = "RotMatPPO",
FunDir = getwd(),
paramList = NULL,
MaxDepth = Inf,
numNode = Inf,
MinLeaf = 10,
Levels = NULL,
subset = NULL,
weights = NULL,
na.action = na.fail,
catLabel = NULL,
Xcat = 0,
Xscale = "Min-max",
TreeRandRotate = FALSE,
...
)
## Default S3 method:
ODT(
X,
y,
split = "auto",
lambda = "log",
NodeRotateFun = "RotMatPPO",
FunDir = getwd(),
paramList = NULL,
MaxDepth = Inf,
numNode = Inf,
MinLeaf = 10,
Levels = NULL,
subset = NULL,
weights = NULL,
na.action = na.fail,
catLabel = NULL,
Xcat = 0,
Xscale = "Min-max",
TreeRandRotate = FALSE,
...
)
Arguments
X |
An n by d numeric matrix (preferable) or data frame. |
... |
Optional parameters to be passed to the low level function. |
formula |
Object of class |
data |
Training data of class |
split |
The criterion used for splitting the nodes. "entropy": information gain and "gini": gini impurity index for classification; "mse": mean square error for regression;
'auto' (default): If the response in |
lambda |
The argument of |
NodeRotateFun |
Name of the function of class
|
FunDir |
The path to the |
paramList |
List of parameters used by the functions |
MaxDepth |
The maximum depth of the tree (default |
numNode |
Number of nodes that can be used by the tree (default |
MinLeaf |
Minimal node size (Default 10). |
Levels |
The category label of the response variable when |
subset |
An index vector indicating which rows should be used. (NOTE: If given, this argument must be named.) |
weights |
Vector of non-negative observational weights; fractional weights are allowed (default NULL). |
na.action |
A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument must be named.) |
catLabel |
A category labels of class |
Xcat |
A class |
Xscale |
Predictor standardization methods. " Min-max" (default), "Quantile", "No" denote Min-max transformation, Quantile transformation and No transformation respectively. |
TreeRandRotate |
If or not to randomly rotate the training data before building the tree (default FALSE, see |
y |
A response vector of length n. |
Value
An object of class ODT containing a list of components::
call
: The original call to ODT.terms
: An object of classc("terms", "formula")
(seeterms.object
) summarizing the formula. Used by various methods, but typically not of direct relevance to users.split
,Levels
andNodeRotateFun
are important parameters for building the tree.predicted
: the predicted values of the training data.projections
: Projection direction for each split node.paramList
: Parameters in a named list to be used byNodeRotateFun
.data
: The list of data related parameters used to build the tree.tree
: The list of tree related parameters used to build the tree.structure
: A set of tree structure data records.nodeRotaMat
: Record the split variables (first column), split node serial number (second column) and rotation direction (third column) for each node. (The first column and the third column are 0 means leaf nodes)nodeNumLabel
: Record each leaf node's category for classification or predicted value for regression (second column is data size). (Each column is 0 means it is not a leaf node)nodeCutValue
: Record the split point of each node. (0 means leaf nodes)nodeCutIndex
: Record the index values of the partitioning variables selected based on the partition criterionsplit
.childNode
: Record the number of child nodes after each splitting.nodeDepth
: Record the depth of the tree where each node is located.
Author(s)
Yu Liu and Yingcun Xia
References
Zhan, H., Liu, Y., & Xia, Y. (2022). Consistency of The Oblique Decision Tree and Its Random Forest. arXiv preprint arXiv:2211.12653.
See Also
online.ODT
prune.ODT
as.party
predict.ODT
print.ODT
plot.ODT
plot_ODT_depth
Examples
# Classification with Oblique Decision Tree.
data(seeds)
set.seed(221212)
train <- sample(1:209, 100)
train_data <- data.frame(seeds[train, ])
test_data <- data.frame(seeds[-train, ])
tree <- ODT(varieties_of_wheat ~ ., train_data, split = "entropy")
pred <- predict(tree, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
# Regression with Oblique Decision Tree.
data(body_fat)
set.seed(221212)
train <- sample(1:252, 100)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
tree <- ODT(Density ~ ., train_data,
split = "mse",
NodeRotateFun = "RotMatPPO", paramList = list(model = "Log", dimProj = "Rand")
)
pred <- predict(tree, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)
# Projection analysis of the oblique decision tree.
data(iris)
tree <- ODT(Species ~ ., data = iris, split="gini",
paramList = list(model = "PPR", numProj = 1))
print(round(tree[["projections"]],3))
### Train ODT on one-of-K encoded categorical data ###
# Note that the category variable must be placed at the beginning of the predictor X
# as in the following example.
set.seed(22)
Xcol1 <- sample(c("A", "B", "C"), 100, replace = TRUE)
Xcol2 <- sample(c("1", "2", "3", "4", "5"), 100, replace = TRUE)
Xcon <- matrix(rnorm(100 * 3), 100, 3)
X <- data.frame(Xcol1, Xcol2, Xcon)
Xcat <- c(1, 2)
catLabel <- NULL
y <- as.factor(sample(c(0, 1), 100, replace = TRUE))
tree <- ODT(X, y, split = "entropy", Xcat = NULL)
head(X)
#> Xcol1 Xcol2 X1 X2 X3
#> 1 B 5 -0.04178453 2.3962339 -0.01443979
#> 2 A 4 -1.66084623 -0.4397486 0.57251733
#> 3 B 2 -0.57973333 -0.2878683 1.24475578
#> 4 B 1 -0.82075051 1.3702900 0.01716528
#> 5 C 5 -0.76337897 -0.9620213 0.25846351
#> 6 A 5 -0.37720294 -0.1853976 1.04872159
# one-of-K encode each categorical feature and store in X1
numCat <- apply(X[, Xcat, drop = FALSE], 2, function(x) length(unique(x)))
# initialize training data matrix X
X1 <- matrix(0, nrow = nrow(X), ncol = sum(numCat))
catLabel <- vector("list", length(Xcat))
names(catLabel) <- colnames(X)[Xcat]
col.idx <- 0L
# convert categorical feature to K dummy variables
for (j in seq_along(Xcat)) {
catMap <- (col.idx + 1):(col.idx + numCat[j])
catLabel[[j]] <- levels(as.factor(X[, Xcat[j]]))
X1[, catMap] <- (matrix(X[, Xcat[j]], nrow(X), numCat[j]) ==
matrix(catLabel[[j]], nrow(X), numCat[j], byrow = TRUE)) + 0
col.idx <- col.idx + numCat[j]
}
X <- cbind(X1, X[, -Xcat])
colnames(X) <- c(paste(rep(seq_along(numCat), numCat), unlist(catLabel),
sep = "."
), "X1", "X2", "X3")
# Print the result after processing of category variables.
head(X)
#> 1.A 1.B 1.C 2.1 2.2 2.3 2.4 2.5 X1 X2 X3
#> 1 0 1 0 0 0 0 0 1 -0.04178453 2.3962339 -0.01443979
#> 2 1 0 0 0 0 0 1 0 -1.66084623 -0.4397486 0.57251733
#> 3 0 1 0 0 1 0 0 0 -0.57973333 -0.2878683 1.24475578
#> 4 0 1 0 1 0 0 0 0 -0.82075051 1.3702900 0.01716528
#> 5 0 0 1 0 0 0 0 1 -0.76337897 -0.9620213 0.25846351
#> 6 1 0 0 0 0 0 0 1 -0.37720294 -0.1853976 1.04872159
catLabel
#> $Xcol1
#> [1] "A" "B" "C"
#>
#> $Xcol2
#> [1] "1" "2" "3" "4" "5"
tree <- ODT(X, y, split = "gini", Xcat = c(1, 2), catLabel = catLabel,NodeRotateFun = "RotMatRF")