NPBayesImputeCat-package |
Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
compute_probs |
Estimating marginal and joint probabilities in imputed or synthetic datasets |
CreateModel |
Create and initialize the Lcm model object |
DPMPM_nozeros_imp |
Use DPMPM models to impute missing data where there are no structural zeros |
DPMPM_nozeros_syn |
Use DPMPM models to synthesize data where there are no structural zeros |
DPMPM_zeros_imp |
Use DPMPM models to impute missing data where there are no structural zeros |
fit_GLMs |
Fit GLM models for imputed or synthetic datasets |
GetDataFrame |
Convert imputed data to a dataframe, using the same setting from original input data. |
GetMCZ |
Convert disjointed structrual zeros to a dataframe, using the same setting from original structrual zero data. |
kstar_MCMCdiag |
Perform MCMC diagnostics for kstar |
Lcm |
Class '"Rcpp_Lcm"' |
marginal_compare_all_imp |
Plot estimated marginal probabilities from observed data vs imputed datasets |
marginal_compare_all_syn |
Plot estimated marginal probabilities from observed data vs synthetic datasets |
MCZ |
Example dataframe for structrual zeros based on the NYMockexample dataset. |
NPBayesImputeCat |
Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
pool_estimated_probs |
Pool probability estimates from imputed or synthetic datasets |
pool_fitted_GLMs |
Pool estimates of fitted GLM models in imputed or synthetic datasets |
Rcpp_Lcm-class |
Rcpp implemenation of the Lcm functions |
ss16pusa_ds_MCZ |
Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset. |
ss16pusa_mi_MCZ |
Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset. |
ss16pusa_sample_nozeros |
Example dataframe for input categorical data without structural zeros (without missing values). |
ss16pusa_sample_nozeros_miss |
Example dataframe for input categorical data without structural zeros (with missing values). |
ss16pusa_sample_zeros |
Example dataframe for input categorical data with structural zeros (without missing values). |
ss16pusa_sample_zeros_miss |
Example dataframe for input categorical data with structural zeros (with missing values). |
UpdateX |
Allow user to update the model with data matrix of same kind. |
X |
Example dataframe for input categorical data with missing values based on the NYMockexample dataset. |