Non-Parametric Bayesian Multiple Imputation for Categorical Data


[Up] [Top]

Documentation for package ‘NPBayesImputeCat’ version 0.5

Help Pages

NPBayesImputeCat-package Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros
compute_probs Estimating marginal and joint probabilities in imputed or synthetic datasets
CreateModel Create and initialize the Lcm model object
DPMPM_nozeros_imp Use DPMPM models to impute missing data where there are no structural zeros
DPMPM_nozeros_syn Use DPMPM models to synthesize data where there are no structural zeros
DPMPM_zeros_imp Use DPMPM models to impute missing data where there are no structural zeros
fit_GLMs Fit GLM models for imputed or synthetic datasets
GetDataFrame Convert imputed data to a dataframe, using the same setting from original input data.
GetMCZ Convert disjointed structrual zeros to a dataframe, using the same setting from original structrual zero data.
kstar_MCMCdiag Perform MCMC diagnostics for kstar
Lcm Class '"Rcpp_Lcm"'
marginal_compare_all_imp Plot estimated marginal probabilities from observed data vs imputed datasets
marginal_compare_all_syn Plot estimated marginal probabilities from observed data vs synthetic datasets
MCZ Example dataframe for structrual zeros based on the NYMockexample dataset.
NPBayesImputeCat Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros
pool_estimated_probs Pool probability estimates from imputed or synthetic datasets
pool_fitted_GLMs Pool estimates of fitted GLM models in imputed or synthetic datasets
Rcpp_Lcm-class Rcpp implemenation of the Lcm functions
ss16pusa_ds_MCZ Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset.
ss16pusa_mi_MCZ Example dataframe for structrual zeros based on the ss16pusa_sample_zeros dataset.
ss16pusa_sample_nozeros Example dataframe for input categorical data without structural zeros (without missing values).
ss16pusa_sample_nozeros_miss Example dataframe for input categorical data without structural zeros (with missing values).
ss16pusa_sample_zeros Example dataframe for input categorical data with structural zeros (without missing values).
ss16pusa_sample_zeros_miss Example dataframe for input categorical data with structural zeros (with missing values).
UpdateX Allow user to update the model with data matrix of same kind.
X Example dataframe for input categorical data with missing values based on the NYMockexample dataset.