A B C D E F G I J L M N P Q R S T U W
as.character.jointmotbf | Class '"jointmotbf"' |
as.character.motbf | Class '"motbf"' |
as.function.jointmotbf | Coerce a '"jointmotbf"' Object to a Function |
as.function.motbf | Coerce an '"motbf"' object to a Function |
as.list.jointmotbf | Class '"jointmotbf"' |
as.list.motbf | Class '"motbf"' |
asMOPString | Parameters to MOP String |
asMTEString | Converting MTEs to strings |
bestMOP | Fitting mixtures of polynomials |
bestMTE | Fitting mixtures of truncated exponentials. |
BiC.MoTBFBN | BIC of a hybrid BN |
BICMoTBF | Computing the BIC score of an MoTBF function |
BICMultiFunctions | BIC score for multiple functions |
BICscoreMoTBF | Learning conditional MoTBF densities |
Class-JointMoTBF | Class '"jointmotbf"' |
Class-MoTBF | Class '"motbf"' |
clean | Remove Objects from Memory |
coef.jointmotbf | Coefficients of a '"jointmotbf"' object |
coef.mop | Extract coefficients from MOPs |
coef.motbf | Extract the coefficients of an MoTBF |
coef.mte | Extracting the coefficients of an MTE |
coefExpJointCDF | Degree Function |
coeffExp | Extracting the coefficients of an MTE |
coeffMOP | Extract coefficients from MOPs |
coeffMTE | Extracting the coefficients of an MTE |
coeffPol | Extract coefficients from MOPs |
conditional | Learning conditional MoTBF densities |
conditionalMethod | Learning conditional MoTBF densities |
conditionalmotbf.learning | Learning conditional MoTBF densities |
dataMining | Data pre-processing utilities |
derivMOP | Derivative of a MOP |
derivMoTBF | Derivating MoTBFs |
derivMTE | Derivating MTEs |
dimensionFunction | Dimension of MoTBFs |
discreteStatesFromBN | Get the states of all discrete nodes from a MoTFB-BN |
discreteVariablesStates | Data pre-processing utilities |
discreteVariables_as.character | Data pre-processing utilities |
discretizeVariablesEWdis | Data pre-processing utilities |
ecoli | Data set Ecoli: Protein Localization Sites |
evalJointFunction | Evaluation of joint MoTBFs |
findConditional | Find fitted conditional MoTBFs |
forward_sampling | Forward Sampling |
generateNormalPriorData | Prior data generation |
getBICDiscreteBN | BIC scxore and log-likelihood |
getChildParentsFromGraph | Get the list of relations in a graph |
getCoefficients | Get the coefficients |
getlogLikelihoodDiscreteBN | BIC scxore and log-likelihood |
getNonNormalisedRandomMoTBF | Ramdom MoTBF |
goodnessDiscreteVariables | BIC scxore and log-likelihood |
goodnessMoTBFBN | BIC of a hybrid BN |
integralJointMoTBF | Integration with MoTBFs |
integralMOP | Integration of MOPs |
integralMoTBF | Integrating MoTBFs |
integralMTE | Integrating MTEs |
inversionMethod | Random generation for MoTBF distributions |
is.discrete | Check discreteness of a node |
is.jointmotbf | Class '"jointmotbf"' |
is.mop | Subclass '"motbf"' Functions |
is.motbf | Class '"motbf"' |
is.mte | Subclass '"motbf"' Functions |
is.observed | Observed Node |
is.root | Root nodes |
jointCDF | Joint MoTBFs CDFs |
jointMoTBF | Joint MoTBF density learning |
jointmotbf | Class '"jointmotbf"' |
jointmotbf.learning | Joint MoTBF density learning |
learn.tree.Intervals | Learning conditional MoTBF densities |
LearningHC | Score-based hybrid Bayesian Network structure learning |
learnMoTBFpriorInformation | Incorporating prior knowledge in the estimation process |
logLikelihood.MoTBFBN | BIC of a hybrid BN |
marginalJointMoTBF | Marginalization of MoTBFs |
meanMOP | Rescaling MoTBF functions |
mop.learning | Fitting mixtures of polynomials |
motbf | Class '"motbf"' |
MoTBF-Distribution | Random generation for MoTBF distributions |
MoTBFs_Learning | Learning hybrid BNs with MoTBFs |
motbf_type | Type of MoTBF |
mte.learning | Fitting mixtures of truncated exponentials. |
newData | Dataset subsetting |
newRangePriorData | Redefining the Domain |
nstates | Data pre-processing utilities |
nVariables | Number of Variables in a Joint Function |
parametersJointMoTBF | Joint MoTBF density learning |
parentValues | Value of parent nodes |
plot.jointmotbf | Bidimensional plots for "jointmotbf" objects |
plot.motbf | Plots for "motbf" objects |
plotConditional | Plot Conditional Functions |
preprocessedData | Data cleaning |
print.jointmotbf | Class '"jointmotbf"' |
print.motbf | Class '"motbf"' |
print.summary.jointmotbf | Summary of a '"jointmotbf"' object |
print.summary.motbf | Summary of an '"motbf"' object |
printBN | BN printing |
printConditional | Summary of conditional MoTBF densities |
printDiscreteBN | Printing discrete Bayesian networks |
probDiscreteVariable | Probability distribution of discrete variables |
quantileIntervals | Data pre-processing utilities |
r.data.frame | Data frame initialization for forward sampling |
rescaledFunctions | Rescaling MoTBF functions |
rescaledMOP | Rescaling MoTBF functions |
rescaledMoTBFs | Rescaling MoTBF functions |
rescaledMTE | Rescaling MoTBF functions |
rMoTBF | Random generation for MoTBF distributions |
rnormMultiv | Multivariate Normal sampling |
sample_MoTBFs | Sample generation from conditional MoTBFs |
scaleData | Data pre-processing utilities |
select | Learning conditional MoTBF densities |
splitdata | Dataset subsetting |
standardizeDataset | Data pre-processing utilities |
subclass | Subclass '"motbf"' Functions |
Subclass-MoTBF | Subclass '"motbf"' Functions |
subsetData | Dataset subsetting |
summary.jointmotbf | Summary of a '"jointmotbf"' object |
summary.motbf | Summary of an '"motbf"' object |
thyroid | Data set Thyroid Disease (thyroid0387) |
ToStringRe_MOP | Rescaling MoTBF functions |
ToStringRe_MTE | Rescaling MoTBF functions |
TrainingandTestData | Dataset subsetting |
univMoTBF | Fitting MoTBFs |
UpperBoundLogLikelihood | Upper bound of the loglikelihood |
whichDiscrete | Data pre-processing utilities |