Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions


[Up] [Top]

Documentation for package ‘MoTBFs’ version 1.4.1

Help Pages

A B C D E F G I J L M N P Q R S T U W

-- A --

as.character.jointmotbf Class '"jointmotbf"'
as.character.motbf Class '"motbf"'
as.function.jointmotbf Coerce a '"jointmotbf"' Object to a Function
as.function.motbf Coerce an '"motbf"' object to a Function
as.list.jointmotbf Class '"jointmotbf"'
as.list.motbf Class '"motbf"'
asMOPString Parameters to MOP String
asMTEString Converting MTEs to strings

-- B --

bestMOP Fitting mixtures of polynomials
bestMTE Fitting mixtures of truncated exponentials.
BiC.MoTBFBN BIC of a hybrid BN
BICMoTBF Computing the BIC score of an MoTBF function
BICMultiFunctions BIC score for multiple functions
BICscoreMoTBF Learning conditional MoTBF densities

-- C --

Class-JointMoTBF Class '"jointmotbf"'
Class-MoTBF Class '"motbf"'
clean Remove Objects from Memory
coef.jointmotbf Coefficients of a '"jointmotbf"' object
coef.mop Extract coefficients from MOPs
coef.motbf Extract the coefficients of an MoTBF
coef.mte Extracting the coefficients of an MTE
coefExpJointCDF Degree Function
coeffExp Extracting the coefficients of an MTE
coeffMOP Extract coefficients from MOPs
coeffMTE Extracting the coefficients of an MTE
coeffPol Extract coefficients from MOPs
conditional Learning conditional MoTBF densities
conditionalMethod Learning conditional MoTBF densities
conditionalmotbf.learning Learning conditional MoTBF densities

-- D --

dataMining Data pre-processing utilities
derivMOP Derivative of a MOP
derivMoTBF Derivating MoTBFs
derivMTE Derivating MTEs
dimensionFunction Dimension of MoTBFs
discreteStatesFromBN Get the states of all discrete nodes from a MoTFB-BN
discreteVariablesStates Data pre-processing utilities
discreteVariables_as.character Data pre-processing utilities
discretizeVariablesEWdis Data pre-processing utilities

-- E --

ecoli Data set Ecoli: Protein Localization Sites
evalJointFunction Evaluation of joint MoTBFs

-- F --

findConditional Find fitted conditional MoTBFs
forward_sampling Forward Sampling

-- G --

generateNormalPriorData Prior data generation
getBICDiscreteBN BIC scxore and log-likelihood
getChildParentsFromGraph Get the list of relations in a graph
getCoefficients Get the coefficients
getlogLikelihoodDiscreteBN BIC scxore and log-likelihood
getNonNormalisedRandomMoTBF Ramdom MoTBF
goodnessDiscreteVariables BIC scxore and log-likelihood
goodnessMoTBFBN BIC of a hybrid BN

-- I --

integralJointMoTBF Integration with MoTBFs
integralMOP Integration of MOPs
integralMoTBF Integrating MoTBFs
integralMTE Integrating MTEs
inversionMethod Random generation for MoTBF distributions
is.discrete Check discreteness of a node
is.jointmotbf Class '"jointmotbf"'
is.mop Subclass '"motbf"' Functions
is.motbf Class '"motbf"'
is.mte Subclass '"motbf"' Functions
is.observed Observed Node
is.root Root nodes

-- J --

jointCDF Joint MoTBFs CDFs
jointMoTBF Joint MoTBF density learning
jointmotbf Class '"jointmotbf"'
jointmotbf.learning Joint MoTBF density learning

-- L --

learn.tree.Intervals Learning conditional MoTBF densities
LearningHC Score-based hybrid Bayesian Network structure learning
learnMoTBFpriorInformation Incorporating prior knowledge in the estimation process
logLikelihood.MoTBFBN BIC of a hybrid BN

-- M --

marginalJointMoTBF Marginalization of MoTBFs
meanMOP Rescaling MoTBF functions
mop.learning Fitting mixtures of polynomials
motbf Class '"motbf"'
MoTBF-Distribution Random generation for MoTBF distributions
MoTBFs_Learning Learning hybrid BNs with MoTBFs
motbf_type Type of MoTBF
mte.learning Fitting mixtures of truncated exponentials.

-- N --

newData Dataset subsetting
newRangePriorData Redefining the Domain
nstates Data pre-processing utilities
nVariables Number of Variables in a Joint Function

-- P --

parametersJointMoTBF Joint MoTBF density learning
parentValues Value of parent nodes
plot.jointmotbf Bidimensional plots for "jointmotbf" objects
plot.motbf Plots for "motbf" objects
plotConditional Plot Conditional Functions
preprocessedData Data cleaning
print.jointmotbf Class '"jointmotbf"'
print.motbf Class '"motbf"'
print.summary.jointmotbf Summary of a '"jointmotbf"' object
print.summary.motbf Summary of an '"motbf"' object
printBN BN printing
printConditional Summary of conditional MoTBF densities
printDiscreteBN Printing discrete Bayesian networks
probDiscreteVariable Probability distribution of discrete variables

-- Q --

quantileIntervals Data pre-processing utilities

-- R --

r.data.frame Data frame initialization for forward sampling
rescaledFunctions Rescaling MoTBF functions
rescaledMOP Rescaling MoTBF functions
rescaledMoTBFs Rescaling MoTBF functions
rescaledMTE Rescaling MoTBF functions
rMoTBF Random generation for MoTBF distributions
rnormMultiv Multivariate Normal sampling

-- S --

sample_MoTBFs Sample generation from conditional MoTBFs
scaleData Data pre-processing utilities
select Learning conditional MoTBF densities
splitdata Dataset subsetting
standardizeDataset Data pre-processing utilities
subclass Subclass '"motbf"' Functions
Subclass-MoTBF Subclass '"motbf"' Functions
subsetData Dataset subsetting
summary.jointmotbf Summary of a '"jointmotbf"' object
summary.motbf Summary of an '"motbf"' object

-- T --

thyroid Data set Thyroid Disease (thyroid0387)
ToStringRe_MOP Rescaling MoTBF functions
ToStringRe_MTE Rescaling MoTBF functions
TrainingandTestData Dataset subsetting

-- U --

univMoTBF Fitting MoTBFs
UpperBoundLogLikelihood Upper bound of the loglikelihood

-- W --

whichDiscrete Data pre-processing utilities