rescaledFunctions {MoTBFs} | R Documentation |
Rescaling MoTBF functions
Description
A collation of function to reescale an MoTBF function to the original offset and scale. This is useful when data was standardized previously to learning.
Usage
rescaledMoTBFs(fx, data)
rescaledMOP(fx, data)
ToStringRe_MOP(parameters, data)
rescaledMTE(fx, data)
ToStringRe_MTE(parameters, data, num = 5)
meanMOP(fx)
Arguments
fx |
A function of class |
data |
A |
parameters |
A |
num |
A |
Value
An "motbf"
function of the original data.
See Also
Examples
## 1. EXAMPLE
X <- rchisq(1000, df = 8) ## data
modX <- scale(X) ## scale data
## Learning
f <- univMoTBF(modX, POTENTIAL_TYPE = "MOP", nparam=10)
plot(f, xlim = range(modX), col=2)
hist(modX, prob = TRUE, add = TRUE)
## Rescale
origF <- rescaledMoTBFs(f, X)
plot(origF, xlim = range(X), col=2)
hist(X, prob = TRUE, add = TRUE)
meanMOP(origF)
mean(X)
## 2. EXAMPLE
X <- rweibull(1000, shape = 20, scale= 10) ## data
modX <- as.numeric(scale(X)) ## scale data
## Learning
f <- univMoTBF(modX, POTENTIAL_TYPE = "MTE", nparam = 9)
plot(f, xlim = range(modX), col=2, main="")
hist(modX, prob = TRUE, add = TRUE)
## Rescale
origF <- rescaledMoTBFs(f, X)
plot(origF, xlim = range(X), col=2)
hist(X, prob = TRUE, add = TRUE)
[Package MoTBFs version 1.4.1 Index]