integralMoTBF {MoTBFs} | R Documentation |
Integrating MoTBFs
Description
Compute the integral of a one-dimensional mixture of truncated basis function over a bounded or unbounded interval.
Usage
integralMoTBF(fx, min = NULL, max = NULL)
Arguments
fx |
An object of class |
min |
The lower integration limit. By default it is NULL. |
max |
The upper integration limit. By default it is NULL. |
Details
If the limits of the interval, min and max are NULL, then the output is the expression of the indefinite integral. If only 'min' contains a numeric value, then the expression of the integral is evaluated at this point.
Value
integralMoTBF()
returns either the indefinite integral of the MoTBF
function, which is also an object of class "motbf"
, or the definite integral,
wich is a "numeric"
value.
See Also
univMoTBF, integralMOP and integralMTE
Examples
## 1. EXAMPLE
X <- rexp(1000)
Px <- univMoTBF(X, POTENTIAL_TYPE="MOP")
integralMoTBF(Px)
integralMoTBF(Px, 1.2)
integralMoTBF(Px, min(X), max(X))
## 2. EXAMPLE
X <- rnorm(1000)
Px <- univMoTBF(X, POTENTIAL_TYPE="MOP")
iP <- integralMoTBF(Px); iP
plot(iP, xlim=range(X))
integralMoTBF(Px, 0.2)
integralMoTBF(Px, min(X), max(X))
## 3. EXAMPLE
X <- rchisq(1000, df = 3)
Px <- univMoTBF(X, POTENTIAL_TYPE="MTE")
integralMoTBF(Px)
integralMoTBF(Px, 1)
integralMoTBF(Px, min(X), max(X))
## Not run:
## 4. EXAMPLE
Px <- "1+x+5"
class(Px)
integralMoTBF(Px)
## Error in integralMoTBF(Px): "fx is not an 'motbf' function."
## End(Not run)
[Package MoTBFs version 1.4.1 Index]