.Fitness_cpp |
Computes the fitness used in the GA |
boot.confint |
Bootstrap confidence intervals |
coef.LR |
Estimated coefficients for the Lorenz Regression |
coef.PLR |
Estimated coefficients for the Penalized Lorenz Regression |
confint.LR |
Confidence intervals for the Lorenz Regression |
confint.PLR |
Confidence intervals for the Penalized Lorenz Regression |
Data.Incomes |
Simulated income data |
Gini.coef |
Concentration index of _y_ wrt _x_ |
Lorenz.boot |
Produces bootstrap-based inference for (penalized) Lorenz regression |
Lorenz.curve |
Concentration curve of _y_ with respect to _x_ |
Lorenz.FABS |
Solves the Penalized Lorenz Regression with Lasso penalty |
Lorenz.GA |
Estimates the parameter vector in Lorenz regression using a genetic algorithm |
Lorenz.graphs |
Graphs of concentration curves |
Lorenz.Population |
Defines the population used in the genetic algorithm |
Lorenz.Reg |
Undertakes a Lorenz regression |
Lorenz.SCADFABS |
Solves the Penalized Lorenz Regression with SCAD penalty |
LorenzRegression |
LorenzRegression : A package to estimate and interpret Lorenz regressions |
plot.LR |
Plots for the Unpenalized Lorenz Regression |
plot.PLR |
Plots for the Penalized Lorenz Regression |
PLR.BIC |
Determines the regularization parameter (lambda) in a PLR via optimization of an information criterion. |
PLR.CV |
Determines the regularization parameter (lambda) in a PLR via cross-validation |
PLR.normalize |
Re-normalizes the estimated coefficients of a penalized Lorenz regression |
PLR.wrap |
Wrapper for the 'Lorenz.SCADFABS' and 'Lorenz.FABS' functions |
print.LR |
Printing method for the Lorenz Regression |
print.PLR |
Printing method for the Penalized Lorenz Regression |
Rearrangement.estimation |
Estimates a monotonic regression curve via Chernozhukov et al (2009) |
summary.LR |
Summary for the Lorenz Regression |
summary.PLR |
Summary for the Penalized Lorenz Regression |